中国激光, 2017, 44 (12): 1202007, 网络出版: 2017-12-11   

激光选区熔化成形边缘堆高控制

Control of Elevated Edge in Selective Laser Melt Molding
作者单位
1 华中科技大学武汉光电国家实验室, 湖北 武汉 430074
2 上海航天精密机械研究所, 上海 201600
摘要
激光选区熔化(SLM)成形中, 常产生边缘位置高于内表面即边缘堆高现象, 边缘堆高将会对SLM成形过程产生不良影响。理论分析了SLM成形中边缘堆高的产生机制, 提出了轮廓-实体和边缘重熔两种控制方法。进一步研究了这两种控制方法下工艺参数, 如边缘宽度、边框厚度、扫描速度和激光功率, 对堆高高度的影响。结果表明: 两种方法均能有效地消除边缘堆高。对于轮廓-实体控制方法, 堆高高度随扫描速度的增大而减小, 随激光功率的升高而增大, 轮廓间距对边缘堆高无影响; 对于边缘重熔控制方法, 堆高高度随扫描速度的增大而减小, 随激光功率的升高而增大, 随边框厚度的增大而增大。
Abstract
In selective laser melt (SLM) molding process, the edge position is usually higher than the inner surface, which is also called elevated edge phenomenon. Elevated edge has bad effects on SLM molding process. We theoretically analyze the production mechanism of elevated edge in SLM molding process, and propose a contour-entity control method and an edge remelting control method. Effects of processing parameters on edge height are studied. Processing parameters include contour spacing, border thickness, scanning speed and laser power. Results show that these methods can effectively reduce the elevated edge. For the contour-entity control method, the height of elevated edge decreases with the increas of scanning speed, increases with the increas of laser power, and is not susceptible to contour spacing. For the edge remelting method, edge height decreases with the increas of scanning speed, and increases with the increas laser power and contour thickness.
参考文献

[1] 王志会, 王华明, 刘栋. 激光增材制造AF1410超高强度钢组织与力学性能研究[J]. 中国激光, 2016, 43(4): 0403001.

    Wang Zhihui, Wang Huaming, Liu Dong. Microstructure and mechanical properties of AF1410 ultra-high strength steel using laser additive manufacture technique[J]. Chinese J Lasers, 2016, 43(4): 0403001.

[2] 杨雄文, 杨永强, 刘洋, 等. 激光选区熔化成型典型几何特征尺寸精度研究[J]. 中国激光, 2015, 42(3): 0303004.

    Yang Xiongwen, Yang Yongqiang, Liu Yang, et al. Study on dimensional accuracy of typical geometric features manufactured by selective laser melting[J]. Chinese J Lasers, 2015, 42(3): 0303004.

[3] Zhang H, Zhu H H, Nie X J, et al. Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy[J]. Scripta Materialia, 2017, 134: 6-10.

[4] Hu Z H, Zhu H H, Zhang H, et al. Experimental investigation on selective laser melting of 17-4PH stainless steel[J]. Optics & Laser Technology, 2017, 87: 17-25.

[5] 张虎, 聂小佳, 朱海红, 等. 激光选区熔化成形高强Al-Cu-Mg合金研究[J]. 中国激光, 2016, 43(5): 0503007.

    Zhang Hu, Nie Xiaojia, Zhu Haihong, et al. Study on high strength Al-Cu-Mg alloy fabricated by selective laser melting[J]. Chinese J Lasers, 2016, 43(5): 0503007.

[6] 陈洪宇, 顾冬冬, 顾荣海, 等. 5CrNi4Mo模具钢选区激光熔化增材制造组织演变及力学性能研究[J]. 中国激光, 2016, 43(2): 0203003.

    Chen Hongyu, Gu Dongdong, Gu Ronghai, et al. Microstructure evolution and mechanical properties of 5CrNi4Mo die steel parts by selective laser melting additive manufacturing[J]. Chinese J Lasers, 2016, 43(2): 0203003.

[7] 陈光霞, 曾晓雁. DLF与SLM激光快速成型方法的比较研究[J]. 现代制造工程, 2010, 5: 72-75.

    Chen Guangxia, Zeng Xiaoyan. Comparative research on direct laser fabrication and selective laser melting[J]. Modern Manufacturing Engineering, 2010, 5: 72-75.

[8] Yang Y Q, Lu J B, Luo Z Y, et al. Accuracy and density optimization in directly fabricating customized orthodontic production by selective laser melting[J]. Rapid Prototyping Journal, 2012, 18(6): 482-489.

[9] 田宗军, 顾冬冬, 沈理达, 等. 激光增材制造技术在航空航天领域的应用与发展[J]. 航空制造技术, 2015, 480 (11): 36-42.

    Tian Zongjun, Gu Dongdong, Shen Lida, et al. Application and development of laser additive manufacturing technology in aeronautics and astronautics[J]. Aeronautical Manufacturing Technology, 2015, 480 (11): 36-42.

[10] Cruz M F, Borille A V. Decision methods application to compare conventional manufacturing process with metal additive manufacturing process in the aerospace industry[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(1): 177-193.

[11] 杨雄文. 激光选区熔化成型件尺寸精度研究及在免组装机构直接制造中的应用[D]. 广州: 华南理工大学, 2015.

    Yang Xiongwen. Study on dimensional accuracy of parts manufactured by selective laser melting and its application in manufacturing non-assembly mechanisms directly[D]. Guangzhou: South China University of Technology, 2015.

[12] 黄文普, 喻寒琛, 殷杰, 等. 激光选区熔化成形K4202镍基铸造高温合金的组织和性能[J]. 金属学报, 2016, 52(9): 1089-1095.

    Huang Wenpu, Yu Hanchen, Yin Jie, et al. Microstructure and mechanical properties of K4202 cast nickel base superalloy fabricated by selective laser melting[J]. Acta Metallurgica Sinica, 2016, 52(9): 1089-1095.

[13] 侯慧鹏, 梁永朝, 何艳丽, 等. 选区激光熔化Hastelloy-X合金组织演变及拉伸性能[J]. 中国激光, 2017, 44(2): 0202007.

    Hou Huipeng, Liang Yongchao, He Yanli, et al. Microstructural evolution and tensile property of hastelloy-X alloys produced by selective laser melting[J]. Chinese J Lasers, 2017, 44(2): 0202007.

[14] 赵进炎, 张永志, 李东方, 等. 选区激光熔化钴铬合金的性能研究[J]. 中国激光, 2015, 42(11): 1103006.

    Zhao Jinyan, Zhang Yongzhi, Li Dongfang, et al. Properties study of Co-Cr alloy fabricated by selective laser melting[J]. Chinese J Lasers, 2015, 42(11): 1103006.

[15] Craeghs T, Clijsters S, Yasa E, et al. Determination of geometrical factors in layerwise laser melting using optical process monitoring[J]. Optics and Lasers in Engineering, 2011, 49 (12): 1440-1446.

[16] Yasa E, Deckers J, Craeghs T, et al. Investigation on occurrence of elevated edges in selective laser melting[C]. International Solid Freeform Fabrication Symposium, 2009: 180-192.

[17] Yang J J, Han J, Yu H C, et al. Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy[J]. Materials & Design, 2016, 110: 558-570.

[18] 王迪, 刘睿诚, 杨永强. 激光选区熔化成型免组装机构间隙设计及工艺优化[J]. 中国激光, 2014, 41(2): 0203004.

    Wang Di, Liu Ruicheng, Yang Yongqiang. Clearance design and process optimization of non-assembly mechanisms fabricated by selective laser melting[J]. Chinese J Lasers, 2014, 41(2): 0203004.

[19] 麦淑珍, 杨永强, 王迪. 激光选区熔化成型NiCr合金曲面表面形貌及粗糙度变化规律研究[J]. 中国激光, 2015, 42(12): 1203004.

    Mai Shuzhen, Yang Yongqiang, Wang Di. Study on surface morphology and roughness variation of NiCr alloy curved surface manufactured by selective laser melting[J]. Chinese J Lasers, 2015, 42(12): 1203004.

[20] 王志颖, 饶玉春, 刘敏. 激光共聚焦显微镜的样品前处理技术研究[J]. 安徽农业科学, 2013, 41(26): 10602-10603.

    Wang Zhiying, Rao Yuchun, Liu Min. Research of test sample pretreatment technology in confocal laser scanning microscopy[J]. Journal of Anhui Agricultural Sciences, 2013, 41(26): 10602-10603.

[21] 马亢, 周庆峰, 施传信, 等. 激光共聚焦显微镜技术进展[J]. 农学学报, 2016, 6(6): 30-35.

    Ma Kang, Zhou Qingfeng, Shi Chuanxin, et al. The progress of confocal laser scanning microscope[J]. Journal of Agriculture, 2016, 6(6): 30-35.

[22] 李洁. 激光光斑能量分布及中心定位的分析与研究[D]. 太原: 中北大学, 2015.

    Li Jie. The analysis and research on the spot energy distribution and the center location of the laser[D]. Taiyuan: North University of China, 2015.

[23] 贾子扬. 脉冲激光作用下45#钢表面微凸起形貌研究[D]. 镇江: 江苏大学, 2016.

    Jia Ziyang. Research of manufacturing micro-convex points on 45# steel surface by long pulse-width laser[D]. Zhenjiang: Jiangsu University, 2016.

[24] Wang D, Wu S B, Fu F, et al. Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties[J]. Materials & Design, 2017, 117: 121-130.

[25] 符永宏, 李成冬, 华希俊, 等. 激光毛化微凸形模具钢表面摩擦磨损性能研究[J]. 摩擦学学报, 2009, 29(5): 475-480.

    Fu Yonghong, Li Chengdong, Hua Xijun, et al. Study on friction and wear properties of the laser textured mold surface with micro-convex[J]. Tribology, 2009, 29(5): 475-480.

[26] 赖鹏, 张庆茂. 激光毛化技术的评述及展望[J]. 激光与光电子学进展, 2009, 46(4): 53-59.

    Lai Peng, Zhang Qingmao. Reviews and prospects of laser texturing technology[J]. Laser & Optoelectronics Progress, 2009, 46(4): 53-59.

[27] 叶晓虎, 陈熙. 激光加热熔池流动和传热的分区数值模拟[J]. 中国激光, 2002, 29(9): 855-858.

    Ye Xiaohu, Chen Xi. Simulation of the fluid flow and heat transfer in laser heating melt pool using a region-dividing method[J]. Chinese J Lasers, 2002, 29(9): 855-858.

[28] Yin J, Zhu H H, Ke L D, et al. A finite element model of thermal evolution in laser micro sintering[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9/12): 1847-1859.

[29] Yadroitsev I, Bertrand P, Antonenkova G, et al. Use of track/layer morphology to develop functional parts by selective laser melting[J]. Journal of Laser Applications, 2013, 25(5): 052003.

[30] Yadroitsev I, Smurov I. Surface morphology in selective laser melting of metal powders[J]. Physics Procedia, 2011, 12: 264-270.

[31] 张靖周, 常海萍. 传热学[M]. 北京: 科学出版社, 2009: 21-26.

    Zhang Jingzhou, Chang Haiping. Heat tansfer[M]. Beijing: Science Press, 2009: 21-26.

[32] Sih S S, Barlow J W. Measurement and prediction of the thermal conductivity of powders at high temperatures[J]. Department of Chemical Engineering, 1994: 321-329.

刘家赫, 朱海红, 胡志恒, 柯林达, 曾晓雁. 激光选区熔化成形边缘堆高控制[J]. 中国激光, 2017, 44(12): 1202007. Liu Jiahe, Zhu Haihong, Hu Zhiheng, Ke Linda, Zeng Xiaoyan. Control of Elevated Edge in Selective Laser Melt Molding[J]. Chinese Journal of Lasers, 2017, 44(12): 1202007.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!