激光与光电子学进展, 2017, 54 (6): 062301, 网络出版: 2017-06-08   

LED异形灯蜂巢散热器设计与实验 下载: 675次

Design and Experiment of Special-Shaped LED Lamp with Honeycomb Radiator
作者单位
1 华侨大学信息科学与工程学院福建省光传输与变换重点实验室, 福建 厦门 361021
2 华侨大学机电及自动化学院, 福建 厦门 361021
摘要
为了提高发光二极管(LED)灯具的散热能力,基于烟囱效应原理,设计了一种新型的LED灯具散热结构。运用SolidWorks软件构建三维模型,利用其Flow Simulation插件进行热仿真。当功率为10 W时, LED芯片的最高温度为81.34 ℃;当功率增加到15 W时,芯片的最高温度变为105.54 ℃,高于其安全工作温度(85 ℃)。提出了在基板中间加入蜂巢散热器的改进方案,使LED芯片的最高温度下降了30.54 ℃,并进行了优化实验。研究结果表明:当蜂巢类型为正六边形、蜂巢边长为6.0 mm、蜂巢壁厚为1.0 mm时,LED异形灯的散热效果最好,LED芯片的最高温度为74.47 ℃,散热器质量为47.19 g。当功率为8,12,15,18 W时,LED芯片的最高温度都满足安全工作要求。通过对8 W的LED异形灯样品进行实验测试,证实了研究的准确性。
Abstract
To improve the cooling capacity of light emitting diode (LED) lamps, a new type of LED lamp radiating structure is designed based on the principle of the chimney effect. A three-dimensional model is built by SolidWorks, and its plug called Flow Simulation is used to simulate the model build. The highest temperature of LED chip is 81.34 ℃ when the power is 10 W. When the power is increased to 15 W, the highest temperature is 105.54 ℃, and it is higher than the security temperature (80 ℃) of LED chip. An improved scheme of adding the honeycomb radiator in the middle of the substrate is proposed. Which reduces the highest temperature of the LED chip by 30.54 ℃, and the optimization experiment is carried out. The results show that when the type of honeycomb is regular hexagon, the length of honeycomb is 6.0 mm and the thickness of the honeycomb is 1.0 mm, special-shaped LED lamp has the best heat dissipation effect. The highest temperature of LED chip is 74.47 ℃ and radiator mass is 47.19 g. When the power is 8, 12, 15, 18 W, the highest temperatures of the LED lamp meet the safety requirements. The accuracy of the study is confirmed by the experiment of 8 W special-shaped LED lamp samples.
参考文献

[1] 董 丽, 刘 华, 王 尧, 等. 紧凑型LED配光设计中光源模型可靠性研究[J]. 光子学报, 2014, 43(2): 1-5.

    Dong Li, Liu Hua, Wang Yao, et al. Reliability of light source modeling for distribution design on compact LED[J]. Acta Photonica Sinica, 2014, 43(2): 1-5.

[2] 刘 超, 傅仁利, 顾席光, 等. 芯片级LED封装光源结构散热性能的数值模拟[J]. 激光与光电子学进展, 2016, 53(12): 122301.

    Liu Chao, Fu Renli, Gu Xiguang, et al. The structure of chip scale package for LED light sources and its thermal performance analysis based on numerical simulation[J]. Laser & Optoelectronics Progress, 2016, 53(12): 122301.

[3] 杨 初, 金尚忠, 邵茂丰, 等. 玻璃基板COB封装的LED性能研究[J]. 激光与光电子学进展, 2015, 52(1): 012304.

    Yang Chu, Jin Shangzhong, Shao Maofeng, et al. Research on LED performance of glass substrate with COB packaging[J]. Laser & Optoelectronics Progress, 2015, 52(1): 012304.

[4] LIN Y C, Tran N, Zhou Y, et al. Materials challenges and solutions for the packaging of high power LEDs[C]// International Microsystems, Packaging, Assembly Conference, Taiwan, 2006, IEEE, 2006: 177-180.

[5] Arik M, Petroski J, Weaver S. Thermal challenges in the future generation solid state lighting applications: Light emitting diodes[C]// Thermal and Thermomechanical Phenomena in Electronic Systems, 2002, IEEE, 2002a: 113-120.

[6] 田立新, 文尚胜, 黄伟明, 等. 大功率LED液冷热沉结构与换热效果研究[J]. 光学学报, 2015, 35(3): 0323003.

    Tian Lixin, Wen Shangsheng, Huang Weiming, et al. Study on the heat sink structure and heat transfer effect of liguid cooling system for high power LEDs[J]. Acta Optica Sinica, 2015, 35(3): 0323003.

[7] 周 驰, 左敦稳, 孙玉利. 自然对流下LED集成芯片整体式热管散热器性能实验研究[J]. 发光学报, 2014, 35(11): 1394-1400.

    Zhou Chi, Zuo Dunwen, Sun Yuli, et al. Study on the heat sink structure and heat transfer effect of liguid cooling system for high power LEDs[J]. Chinese Journal of Luminescence, 2014, 35(11): 1294-1400.

[8] Luo X B, Liu S H. A microjet array cooling system for thermal management of high-brightness LEDs[J]. IEEE Transactions on Advanced Packaging, 2007, 30(3): 475-484.

[9] 陈颖聪, 文尚胜, 吴玉香. 基于塑料散热器无基板板上芯片封装的LED热分析[J]. 光学学报, 2013, 33(8): 0823005.

    Chen Yingcong, Wen Shangsheng, Wu Yuxiang. Thermalanalysis for LED chip on board package based on plastic radiator without substrate[J]. Acta Optica Sinica, 2013, 33(8): 0823005.

[10] 朱 鹏. 基于烟囱效应对大功率LED灯的强化散热[D]. 大连: 大连理工大学, 2014.

    Zhu Peng. The enhancement of heat dissipation of high power LED lamp with chimney effect[D]. Dalian: Dalian University of Technology, 2014.

[11] 陈启勇, 何 川, 高园园. 大功率LED路灯散热器自然对流的数值研究[J]. 半导体光电, 2011, 32(4): 498-501.

    Chen Qiyong, He Chuan, Gao Yuanyuan. Numerical study on natural convection of high-power LED street lamp heat sink[J]. Semiconductor Optoelectronics, 2011, 32(4): 498-501.

[12] 刘 娇, 刘娟芳, 陈清华, 等. 替代100 W白炽灯的新型12 W LED球泡灯的散热性能研究[J]. 发光学报, 2014, 35(7): 866-871.

    Liu Jiao, Liu Juanfang, Chen Qinghua, et al. Thermal management of novel 12 W LED bulb for the substitution of 100 W incandescent bulb[J]. Chinese Journal of Luminescence, 2014, 35(7): 866-871.

[13] 李本红, 刘海林. 烟囱效应在大功率LED灯具散热器设计中的影响分析[J]. 电子器件, 2014, 37(2): 221-224.

    Li Benhong, Liu Hailin. Analysis of the chimney effect in thermal design of high-power LED lamps radiator[J]. Chinese Journal of Electron Devices, 2014, 37(2): 221-224.

[14] 刘海林. 大功率LED灯具散热封装组件的优化设计[D]. 宁波: 宁波大学, 2013.

    Liu Hailin. Optimal design of the components in high-power LED lamps thermal package[D]. Ningbo: Ningbo University, 2013.

唐帆, 王丹, 郭震宁. LED异形灯蜂巢散热器设计与实验[J]. 激光与光电子学进展, 2017, 54(6): 062301. Tang Fan, Wang Dan, Guo Zhenning. Design and Experiment of Special-Shaped LED Lamp with Honeycomb Radiator[J]. Laser & Optoelectronics Progress, 2017, 54(6): 062301.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!