激光与光电子学进展, 2017, 54 (10): 102001, 网络出版: 2017-10-09   

内镜超声合成孔径成像算法的并行实现 下载: 679次

Parallel Implementation of Synthetic Aperture Imaging Algorithm for Endoscopic Ultrasound
作者单位
天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室, 天津 300072
摘要
为了提高合成孔径成像算法在医学超声内镜系统中的计算效率, 提出一种在图形处理器(GPU)上并行实现的合成孔径成像方法。首先介绍了合成孔径算法的基本原理和图像重构过程; 然后对该算法进行并行化处理分析; 最后采用CUDA编程模式单指令多线程(SIMT)的灵活架构, 实现了基于GPU的内镜超声合成孔径成像算法。对多组散射点仿真成像实验进行对比分析, 并采用自行搭建的超声内镜实验系统对铁丝、肿囊假体及猪皮组织进行成像实验验证。实验结果表明, 所提方法在保证成像结果和成像质量不变的前提下, 大幅度提高了计算效率, 在计算数据规模为1.47 GB(5305×581×64×8 byte)时, 获得了50.93倍的最大加速比。
Abstract
In order to improve the computational efficiency of synthetic aperture imaging algorithm in the medical endoscopic ultrasound system, the synthetic aperture imaging approach with parallel implementation on graphics processing unit (GPU) is proposed. Firstly, the basic principle and image reconstruction process of synthetic aperture algorithm are introduced. Then, the algorithm is analyzed in parallel processing. Finally, synthetic aperture imaging algorithm for endoscopic ultrasound based on GPU is implemented by using the flexible architecture of single instruction multiple threads (SIMT) of compute unified device architecture (CUDA) programming mode. Multiple simulation experiments of scattering points imaging are compared and analyzed, and the imaging experiment verifications of iron wire, cyst prosthesis and pigskin tissue are carried out by using a self-built endoscopic ultrasound experimental system. The experimental results show that the proposed method can greatly improve the computational efficiency while keeping the same imaging quality and results. When the calculated data size is 1.47 GB (5305×581×64×8 byte), the maximum speedup ratio reaches 50.93.
参考文献

[1] 陈晓冬, 李明, 俞锋, 等. 超声内窥数字成像技术[J]. 中国激光, 2009, 36(10): 2557-2560.

    Chen Xiaodong, Li Ming, Yu Feng, et al. Technology of digital endoscopic ultrasonic imaging[J]. Chinese J Lasers, 2009, 36(10): 2557-2560.

[2] 郁道银, 李明, 李妍, 等. 超声内窥合成孔径成像技术的研究[J]. 中国激光, 2010, 37(11): 2693-2697.

    Yu Daoyin, Li Ming, Li Yan, et al. Research on synthetic aperture technique for endoscopic ultrasound imaging[J]. Chinese J Lasers, 2010, 37(11): 2693-2697.

[3] Tasinkevych Y, Trots I, Nowicki A, et al. Modified synthetic transmit aperture algorithm for ultrasound imaging[J]. Ultrasonics, 2012, 52(2): 333-342.

[4] Jensen J A, Nikolov S I, Gammelmark K L, et al. Synthetic aperture ultrasound imaging[J]. Ultrasonics, 2006, 44(sl): 5-15.

[5] 张智露, 蔡冬梅, 贾鹏, 等. 基于功率谱的高精度大气湍流相位屏的快速模拟[J]. 激光与光电子学进展, 2017, 54(2): 020101.

    Zhang Zhilu, Cai Dongmei, Jia Peng, et al. Fast simulation for high precision atmospheric turbulence phase screen based on power spectrum[J]. Laser & Optoelectronics Progress, 2017, 54(2): 020101.

[6] 赵春晖, 姚淅峰, 张丽丽. 采用字典递归更新的目标检测稀疏算法及GPU实现[J]. 光学学报, 2016, 36(8): 0828002.

    Zhao Chunhui, Yao Xifeng, Zhang Lili. Target detection sparse algorithm by recursive dictionary updating and GPU implementation[J]. Acta Optica Sinica, 2016, 36(8): 0828002.

[7] 李路遥, 闫连山, 叶佳, 等. 基于自适应模拟退火算法的光学模式转换技术[J]. 光学学报, 2016, 36(12): 1206004.

    Li Luyao, Yan Lianshan, Ye Jia, et al. Mode conversion technology based on adaptive simulated annealing algorithm[J]. Acta Optica Sinica, 2016, 36(12): 1206004.

[8] 丁科, 谭营. GPU通用计算及其在计算智能领域的应用[J]. 智能系统学报, 2015, 10(1): 1-11.

    Ding Ke, Tan Ying. A review on general purpose computing on GPUs and its applications in computational intelligence[J]. CAAI Transactions on Intelligent Systems, 2015, 10(1): 1-11.

[9] 陶自强, 吕留帅, 吴剑, 等. CUDA加速医学超声图像SRAD去噪[J]. 中国医药导刊, 2015, 17(s1): 44-48.

    Tao Ziqiang, Lü Liushuai, Wu Jian, et al. CUDA accelerate SRAD algorithmin medical ultrasonic image[J]. Chinese Journal of Medicinal Guide, 2015, 17(s1): 44-48.

[10] Karaman M, Li P C, O′Donnell M. Synthetic aperture imaging for small scale systems[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 1995, 42(3): 429-442.

[11] 张闯, 陈晓冬, 汪毅, 等. 基于合成孔径技术的内镜超声相控阵成像算法[J]. 光学学报, 2014, 34(12): 1211004.

    Zhang Chuang, Chen Xiaodong, Wang Yi, et al. Phased array imaging algorithm for endoscopic ultrasound based on synthetic aperture imaging technique[J]. Acta Optica Sinica, 2014, 34(12): 1211004.

[12] 熊邦书, 叶毅嘉, 欧巧凤, 等. 基于CUDA的蛋白质点检测快速实现方法[J]. 生物医学工程学杂志, 2016, 33(1): 83-88.

    Xiong Bangshu, Ye Yijia. Ou Qiaofeng, et al. Fast implementation method of protein spots detection based on CUDA[J]. Journal of Biomedical Engineering, 2016, 33(1): 83-88.

[13] 程峰, 李德华. 基于CUDA的Adaboost算法并行实现[J]. 计算机工程与科学, 2011, 33(2): 118-123.

    Cheng Feng, Li Dehua. CUDA-based parallel implementation of the Adaboost algorithm[J]. Computer Engineering & Science, 2011, 33(2): 118-123.

[14] Jensen J A. FIELD: a program for simulating ultrasound systems[J]. Medical & Biological Engineering & Computing, 1999, 34: 351-353.

[15] Jensen J A. Users′ guide for the Field II program[M]. Denmark: Technical University of Denmark, 2001.

[16] 蒋晓瑜, 丛彬, 裴闯, 等. 一种基于新型查表方法的统一计算设备架构并行计算全息算法[J]. 光学学报, 2015, 35(2): 0209001.

    Jiang Xiaoyu, Cong Bin, Pei Chuang, et al. A new look-up table method of holographic algorithms based on compute unified device architecture parallel computing[J]. Acta Optica Sinica, 2015, 35(2): 0209001.

[17] 刘金硕, 刘天晓, 吴慧, 等. 从图形处理器到基于GPU的通用计算[J]. 武汉大学学报(理学版), 2013, 59(2): 198-206.

    Liu Jinshuo, Liu Tianxiao, Wu Hui, et al. From graphic processing unit to general purpose graphic processing unit[J]. Journal of Wuhan University (Natural Science Edition), 2013, 59(2): 198-206.

李溦, 陈晓冬, 李嘉科, 汪毅, 郁道银. 内镜超声合成孔径成像算法的并行实现[J]. 激光与光电子学进展, 2017, 54(10): 102001. Li Wei, Chen Xiaodong, Li Jiake, Wang Yi, Yu Daoyin. Parallel Implementation of Synthetic Aperture Imaging Algorithm for Endoscopic Ultrasound[J]. Laser & Optoelectronics Progress, 2017, 54(10): 102001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!