激光与光电子学进展, 2017, 54 (1): 011203, 网络出版: 2017-01-17   

四步空域准相移单帧载频条纹相位解调技术 下载: 660次

Four-Step Spatial Quasi-Phase-Shifting Technique for Phase Demodulation from a Single Carrier Fringe Pattern
作者单位
暨南大学光电工程系, 广东 广州 510632
摘要
提出了一种适合动态光学测量的单帧载频条纹相位解调技术——四步空域准相移技术。基于载频条纹信号的频率调制正弦函数表达形式, 并利用帧内四个区域的积分强度以及四个区域在帧内的相移关系, 推导了该技术的相位解调算法。该算法采用四个区域内的积分强度进行相位计算, 具有较好的高斯白噪声抵抗能力; 计算相位时可隔离不同区域噪声的影响, 具有较高的空间局域性; 可以克服次条纹积分算法中的频率失配问题; 无需进行频率的探测, 提高了相位解调效率, 尤其适合动态测量。实验和仿真结果均证明了所提出方法的可行性和有效性。
Abstract
Four-step spatial quasi-phase-shifting technique, an analysis method for phase estimation from a single spatial carrier fringe pattern, is proposed for dynamic optical measurement. Based on the frequency-modulation form of sinusoidal function for the carrier fringe pattern, the phase demodulation formulas are derived with the intra-frame phase shift relations and the integral intensity in four segments. This proposed algorithm has robustness for white Gaussian noise by using the integral intensity for phase estimation, and has high spatial localization for local noise isolation. It can deal with the problem of frequency mismatch in the sub-fringe integration algorithm. Because the local frequency detection process is not necessary, the computation efficiency for the phase estimation is increased. Particularly, it is suitable for dynamic measurement. The simulation and experimental results demonstrate the feasibility and the validity of the proposed algorithm.
参考文献

[1] Rastogi P, Hack E. Phase estimation in optical interferometry[M]. Boca Raton: CRC Press, 2014.

[2] 苏显渝, 张启灿, 陈文静. 结构光三维成像技术[J]. 中国激光, 2014, 41(2): 0209001.

    Su Xianyu, Zhang Qican, Chen Wenjing. Three-dimensional imaging based on structured illumination[J]. Chinese J Lasers, 2014, 41(2): 0209001.

[3] Zhang S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques[J]. Optics & Lasers in Engineering, 2010, 48(2): 149-158.

[4] Zhu X J, Tang C, Li B Y, et al. Phase retrieval from single frame projection fringe pattern with variational image decomposition[J]. Optics & Lasers in Engineering, 2014, 59: 25-33.

[5] Martino J M D, Fernández A, Ayubi G A, et al. Differential 3D shape retrieval[J]. Optics & Lasers in Engineering, 2014, 58: 114-118.

[6] Takeda M, Ina H, Kobayashi S. Fourier-transform algorithm of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America, 1982, 72(1): 156-160.

[7] Qian K M. Windowed Fourier transform for fringe pattern analysis[J]. Applied Optics, 2004, 43(13): 2695-2702.

[8] Zhong J G, Weng J W. Dilating Gabor transform for the fringe analysis of 3-D shape measurement[J]. Optical Engineering, 2004, 43(4): 895-899.

[9] Zhong J, Zeng H. Multiscale windowed Fourier transform for phase extraction of fringe patterns[J]. Applied Optics, 2007, 46(14): 2670-2675.

[10] 王辰星, 达飞鹏. 三维测量中一种新的自适应窗口傅里叶相位提取法[J]. 光学学报, 2012, 32(6): 0612005.

    Wang Chenxing, Da Feipeng. Anovel adaptive windowed Fourier transform for phase retrieval in 3D shape measurement[J]. Acta Optica Sinica, 2012, 32(6): 0612005.

[11] 董富强, 达飞鹏, 黄 昊. 基于S变换的改进窗口傅里叶三维测量法[J]. 光学学报, 2012, 32(5): 0512008.

    Dong Fuqiang, Da Feipeng, Huang Hao. Windowed Fouriertransform profilometry based on advanced S-transform[J]. Acta Optica Sinica, 2012, 32(5): 0512008.

[12] Zhong J, Weng J. Spatial carrier-fringe pattern analysis by means of wavelet transform: Wavelet transform profilometry[J]. Applied Optics, 2004, 43(26): 4993-4998.

[13] Zhong J, Weng J. Phase retrieval of optical fringe patterns from the ridge of a wavelet transform[J]. Optics Letters, 2005, 30(19): 2560-2562.

[14] 余 程, 李思坤, 王向朝. 基于并行小波变换的快速三维面形测量技术[J]. 光学学报, 2014, 34(5): 0512005.

    Yu Cheng, Li Sikun, Wang Xiangzhao. Fastthree-dimensional shape measurement technique by means of wavelet transform based on parallel computing[J]. Acta Optica Sinica, 2014, 34(5): 0512005.

[15] 郑 毅, 陈文静, 钟 敏, 等. 提高基于Morlet小波"脊"处理方法的相位解调精度研究[J]. 激光与光电子学进展, 2014, 51(11): 111203.

    Zheng Yi, Chen Wenjing, Zhong Min, et al. Study of profilometry measurement precision improvement based on Morlet wavelet transform[J]. Laser & Optoelectronics Progress, 2014, 51(11): 111203.

[16] Wang Z, Ma H. Advanced continuous wavelet transform algorithm for digital interferogram analysis and processing[J]. Optical Engineering, 2006, 45(4): 045601.

[17] Gdeisat M A, Burton D R, Lalor M J. Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform[J]. Applied Optics, 2006, 45(34): 8722-8732.

[18] Zhang Z, Zhong J. Applicability analysis of wavelet-transform profilometry[J]. Optics Express, 2013, 21(16): 18777-18796.

[19] Kujawinska M. Spatial phase measurement methods in interferogram analysis[J]. London: Institute of Physics Publishing, 1993: 141-193.

[20] Ferrari J A, Frins E M. Multiple phase-shifted interferograms obtained from a single interferogram with linear carrier[J]. Optics Communications, 2007, 271(1): 59-64.

[21] Zhang R, Guo H. Phase gradients from intensity gradients: A method of spatial carrier fringe pattern analysis[J]. Optics Express, 2014, 22(19): 22432-22445.

[22] Wyant J C. Use of an ac heterodyne lateral shear interferometer with real-time wavefront correction systems[J]. Applied Optics, 1975, 14(11): 2622-2626.

[23] Ei-Morsy M, Harada K, Itoh M, et al. A subfringe integration algorithm for multiple-beam Fizeau fringe analysis[J]. Optics & Laser Technology, 2003, 35(3): 223-232.

[24] Wang M, Zhong J, Li D. Subfringe integration profilometry of three-dimensional diffuse objects[J]. Optical Engineering, 1997, 36(9): 2567-2572.

[25] Zhang Z, Zhong J. Spatial quasi-phase-shifting technique for single-frame dynamic fringe analysis[J]. Optics Express, 2014, 22(3): 2695-2705.

[26] 胡 奎, 马 骁, 钟金钢. 改进的次条纹积分相位分析技术[J]. 应用光学, 2016, 37(2): 215-220.

    Hu Kui, Ma Xiao, Zhong Jingang. Improved sub-fringe integration technique for phase analysis[J]. Journal of Applied Optics, 2016, 37(2): 215-220.

[27] Carré P. Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures[J]. Metrologia, 1996, 2(1): 13-23.

[28] Servin M, Gonzalez A. Linear analysis of the four-step Carré phase shifting algorithm: Spectrum, signal-to-noise ratio, and harmonics response[R/OL]. (2012-03-08)[2016-07-03] https://arxiv.org/abs/1203.1947.

[29] Ransom P, Kokal J V. Interferogram analysis by a modified sinusoid fitting technique[J]. Applied Optics, 1986, 25(22): 4199-4204.

[30] Larkin K. Efficient nonlinear algorithm for envelope detection in white light interferometry[J]. Journal of the Optical Society of America A, 1996, 13(4): 832-843.

[31] Stoilov G, Dragostinov T. Phase-stepping interferometry: Five-frame algorithm with an arbitrary step[J]. Optics & Lasers in Engineering, 1997, 28(1): 61-69.

[32] Asundi A, Wensen Z. Fast phase-unwrapping algorithm based on a gray-scale mask and flood fill[J]. Applied Optics, 1998, 37(23): 5416-5420.

林锦新, 马骁, 李仕萍, 钟金钢. 四步空域准相移单帧载频条纹相位解调技术[J]. 激光与光电子学进展, 2017, 54(1): 011203. Lin Jinxin, Ma Xiao, Li Shiping, Zhong Jingang. Four-Step Spatial Quasi-Phase-Shifting Technique for Phase Demodulation from a Single Carrier Fringe Pattern[J]. Laser & Optoelectronics Progress, 2017, 54(1): 011203.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!