光学学报, 2017, 37 (12): 1213001, 网络出版: 2018-09-06   

基于微腔耦合结构金属弯曲波导的光透射特性 下载: 865次

Light Transmission Characteristics of Metal Curved Waveguide Based on Microcavity Coupling Structures
作者单位
1 桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
2 广西信息科技实验中心, 广西 桂林 541004
3 桂林电子科技大学计算机与信息安全学院, 广西 桂林 541004
引用该论文

肖功利, 刘利, 杨宏艳, 蒋行国, 王宏庆, 刘小刚, 李海鸥, 张法碧, 傅涛. 基于微腔耦合结构金属弯曲波导的光透射特性[J]. 光学学报, 2017, 37(12): 1213001.

Gongli Xiao, Li Liu, Hongyan Yang, Xingguo Jiang, Hongqing Wang, Xiaogang Liu, Haiou Li, Fabi Zhang, Tao Fu. Light Transmission Characteristics of Metal Curved Waveguide Based on Microcavity Coupling Structures[J]. Acta Optica Sinica, 2017, 37(12): 1213001.

参考文献

[1] RaetherH. Surface plasmons on smooth and rough surfaces and on gratings[M]. Berlin: Springer-Verlag, 1988.

    RaetherH. Surface plasmons on smooth and rough surfaces and on gratings[M]. Berlin: Springer-Verlag, 1988.

[2] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

    Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

[3] 热西代古丽·吾吉艾合买提. 基于表面等离子体MIM波导的光学谐振腔[D]. 长沙: 湖南大学, 2014.

    热西代古丽·吾吉艾合买提. 基于表面等离子体MIM波导的光学谐振腔[D]. 长沙: 湖南大学, 2014.

    RexidaiguliWujiaihemaiti. Optical resonators based on surface plasmon MIM waveguides[D]. Changsha: Hunan University, 2014.

    RexidaiguliWujiaihemaiti. Optical resonators based on surface plasmon MIM waveguides[D]. Changsha: Hunan University, 2014.

[4] 王玲玲, 张振, 王柳, 等. 基于矩形谐振腔MIM波导结构的表面等离子体带阻滤波器[J]. 湖南大学学报(自然科学版), 2012, 39(5): 65-68.

    王玲玲, 张振, 王柳, 等. 基于矩形谐振腔MIM波导结构的表面等离子体带阻滤波器[J]. 湖南大学学报(自然科学版), 2012, 39(5): 65-68.

    WangLingling, ZhangZhen, WangLiu, et al. Study of the surface plasmon band-stop filter based on the structure of rectangular resonator MIM waveguide[L]. Journal of Hunan University (Natural Science), 2012, 39( 5): 65- 68.

    WangLingling, ZhangZhen, WangLiu, et al. Study of the surface plasmon band-stop filter based on the structure of rectangular resonator MIM waveguide[L]. Journal of Hunan University (Natural Science), 2012, 39( 5): 65- 68.

[5] 张振. 基于矩形谐振腔波导结构表面等离子体滤波器的研究[D]. 长沙: 湖南大学, 2012.

    张振. 基于矩形谐振腔波导结构表面等离子体滤波器的研究[D]. 长沙: 湖南大学, 2012.

    ZhenZhang. Study of the surface plasmon filter based on the structure of rectangular resonator waveguide[D]. Changsha: Hunan University, 2012.

    ZhenZhang. Study of the surface plasmon filter based on the structure of rectangular resonator waveguide[D]. Changsha: Hunan University, 2012.

[6] 庞绍芳, 屈世显, 张永元, 等. 基于L形谐振腔MIM波导结构滤波特性的研究[J]. 光学学报, 2015, 35(6): 0623001.

    庞绍芳, 屈世显, 张永元, 等. 基于L形谐振腔MIM波导结构滤波特性的研究[J]. 光学学报, 2015, 35(6): 0623001.

    Pang Shaofang, Qu Shixian, Zhang Yongyuan. Filter characteristic research of MIM waveguide based on L shaped resonator[J]. Acta Optica Sinica, 2015, 35(6): 0623001.

    Pang Shaofang, Qu Shixian, Zhang Yongyuan. Filter characteristic research of MIM waveguide based on L shaped resonator[J]. Acta Optica Sinica, 2015, 35(6): 0623001.

[7] 韦力丹, 王宏庆, 杨宏艳, 等. 内嵌金属块的金属-绝缘体-金属波导光透射特性[J]. 激光与光电子学进展, 2016, 53(9): 092401.

    韦力丹, 王宏庆, 杨宏艳, 等. 内嵌金属块的金属-绝缘体-金属波导光透射特性[J]. 激光与光电子学进展, 2016, 53(9): 092401.

    Wei Lidan, Wang Hongqing, Yang Hongyan, et al. Optic transmission characteristics of embedded metal strip based on metal-insulator-metal waveguide[J]. Laser & Optoelectronics Progress, 2016, 53(9): 092401.

    Wei Lidan, Wang Hongqing, Yang Hongyan, et al. Optic transmission characteristics of embedded metal strip based on metal-insulator-metal waveguide[J]. Laser & Optoelectronics Progress, 2016, 53(9): 092401.

[8] Lee T W, Gray S K. Subwavelength light bending by metal slit structures[J]. Optics Express, 2005, 13(24): 9652-9659.

    Lee T W, Gray S K. Subwavelength light bending by metal slit structures[J]. Optics Express, 2005, 13(24): 9652-9659.

[9] Veronis G, Fan S. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides[J]. Applied Physics Letters, 2005, 87(13): 131102.

    Veronis G, Fan S. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides[J]. Applied Physics Letters, 2005, 87(13): 131102.

[10] Duan G Y, Lang P L, Wang L L, et al. A band-pass plasmonic filter with dual-square ring resonator[J]. Modern Physics Letters B, 2014, 28(23): 1450188.

    Duan G Y, Lang P L, Wang L L, et al. A band-pass plasmonic filter with dual-square ring resonator[J]. Modern Physics Letters B, 2014, 28(23): 1450188.

[11] Pang S F, Zhang Y Y, Huo Y P, et al. The filter characteristic research of metal-insulator-metal waveguide with double overlapping annular rings[J]. Plasmonics, 2015, 10(6): 1723-1728.

    Pang S F, Zhang Y Y, Huo Y P, et al. The filter characteristic research of metal-insulator-metal waveguide with double overlapping annular rings[J]. Plasmonics, 2015, 10(6): 1723-1728.

[12] Zhang Z, Shi F H, Chen Y H. Tunable multichannel plasmonic filter based on coupling-induced mode splitting[J]. Plasmonics, 2015, 10(1): 139-144.

    Zhang Z, Shi F H, Chen Y H. Tunable multichannel plasmonic filter based on coupling-induced mode splitting[J]. Plasmonics, 2015, 10(1): 139-144.

[13] Wang H Q, Yang J B, Zhang J J, et al. Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure[J]. Optics Letters, 2016, 41(6): 1233-1236.

    Wang H Q, Yang J B, Zhang J J, et al. Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure[J]. Optics Letters, 2016, 41(6): 1233-1236.

[14] TaoJ, Huang XG, LinX, et al. Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters[C]. Journal of the Optical Society of America B, 2010, 27( 2): 323- 327.

    TaoJ, Huang XG, LinX, et al. Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters[C]. Journal of the Optical Society of America B, 2010, 27( 2): 323- 327.

[15] Yun B F, Hu G H, Cui Y P. Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide[J]. Journal of Physics D: Applied Physics, 2010, 43(38): 385102.

    Yun B F, Hu G H, Cui Y P. Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide[J]. Journal of Physics D: Applied Physics, 2010, 43(38): 385102.

[16] Hu F F, Yi H X, Zhou Z P. Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities[J]. Optics Express, 2011, 19(6): 4848-4855.

    Hu F F, Yi H X, Zhou Z P. Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities[J]. Optics Express, 2011, 19(6): 4848-4855.

[17] Hu F, Zhou Z. Wavelength filtering and demultiplexing structure based on aperture-coupled plasmonic slot cavities[J]. Journal of the Optical Society of America B, 2011, 28(10): 2518-2523.

    Hu F, Zhou Z. Wavelength filtering and demultiplexing structure based on aperture-coupled plasmonic slot cavities[J]. Journal of the Optical Society of America B, 2011, 28(10): 2518-2523.

[18] Lu H, Liu X M, Gong Y K, et al. Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities[J]. Optics Express, 2011, 19(14): 12885-12890.

    Lu H, Liu X M, Gong Y K, et al. Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities[J]. Optics Express, 2011, 19(14): 12885-12890.

[19] Wang G X, Lu H, Liu X M, et al. Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime[J]. Optics Express, 2011, 19(4): 3513-3518.

    Wang G X, Lu H, Liu X M, et al. Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime[J]. Optics Express, 2011, 19(4): 3513-3518.

[20] 徐杨. 表面等离子体在金属-电介质-金属结构内的传输特性[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    徐杨. 表面等离子体在金属-电介质-金属结构内的传输特性[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    XuYang. Surface plasmon transmission property in metal-dielectric-metal structure[D]. Harbin: Harbin Institute of Technology, 2011.

    XuYang. Surface plasmon transmission property in metal-dielectric-metal structure[D]. Harbin: Harbin Institute of Technology, 2011.

[21] 谷开慧. 原子辅助光力学腔的杂化诱导透明及快慢光调控[D]. 长春: 吉林大学, 2015.

    谷开慧. 原子辅助光力学腔的杂化诱导透明及快慢光调控[D]. 长春: 吉林大学, 2015.

    GuKaihui. Hybrid induced transparency and fast/slow light manipulation in atom-assisted optomechanical cavity[D]. Changchun: Jilin University, 2015.

    GuKaihui. Hybrid induced transparency and fast/slow light manipulation in atom-assisted optomechanical cavity[D]. Changchun: Jilin University, 2015.

[22] 孙维瑾, 董超. 电磁诱导透明和导致极慢光速的机制[J]. 物理与工程, 2004, 14(4): 24-25.

    孙维瑾, 董超. 电磁诱导透明和导致极慢光速的机制[J]. 物理与工程, 2004, 14(4): 24-25.

    Sun Weijin, Dong Chao. The mechanism of the electromagnetically induced transparency and the ultraslow speed of light[J]. Physics and Engineering, 2004, 14(4): 24-25.

    Sun Weijin, Dong Chao. The mechanism of the electromagnetically induced transparency and the ultraslow speed of light[J]. Physics and Engineering, 2004, 14(4): 24-25.

[23] 陈方. 波导微腔耦合系统的光开关及滤波特性的研究[D]. 武汉: 武汉大学, 2015.

    陈方. 波导微腔耦合系统的光开关及滤波特性的研究[D]. 武汉: 武汉大学, 2015.

    ChenFang. The study on optical switches and filtering characteristics in waveguide-resonator coupled system[D]. Wuhan: Wuhan University, 2015.

    ChenFang. The study on optical switches and filtering characteristics in waveguide-resonator coupled system[D]. Wuhan: Wuhan University, 2015.

[24] 石振东, 赵海发, 刘建龙, 等. 基于表面等离激元的金属波导全光开关设计[J]. 光学学报, 2015, 35(2): 0213001.

    石振东, 赵海发, 刘建龙, 等. 基于表面等离激元的金属波导全光开关设计[J]. 光学学报, 2015, 35(2): 0213001.

    Shi Zhendong, Zhao Haifa, Liu Jianlong, et al. Design of a metallic waveguide all-optical switch based on surface plasmon polaritons[J]. Acta Optica Sinica, 2015, 35(2): 0213001.

    Shi Zhendong, Zhao Haifa, Liu Jianlong, et al. Design of a metallic waveguide all-optical switch based on surface plasmon polaritons[J]. Acta Optica Sinica, 2015, 35(2): 0213001.

[25] 石振东. 基于表面等离激元的非线性全光开关研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    石振东. 基于表面等离激元的非线性全光开关研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    ShiZhendong. Study of nonlinear all-optcial switching based on surface plasmon polaritons[D]. Harbin: Harbin Institute of Technology, 2013.

    ShiZhendong. Study of nonlinear all-optcial switching based on surface plasmon polaritons[D]. Harbin: Harbin Institute of Technology, 2013.

[26] Jiao Y C, Yang Z W, Zhang H, et al. Electromagnetically induced transparency in modulated laser fields[J]. Journal of Physics B: Atomic, Molecular, and Optical Physics, 2016, 50(3): 035001.

    Jiao Y C, Yang Z W, Zhang H, et al. Electromagnetically induced transparency in modulated laser fields[J]. Journal of Physics B: Atomic, Molecular, and Optical Physics, 2016, 50(3): 035001.

肖功利, 刘利, 杨宏艳, 蒋行国, 王宏庆, 刘小刚, 李海鸥, 张法碧, 傅涛. 基于微腔耦合结构金属弯曲波导的光透射特性[J]. 光学学报, 2017, 37(12): 1213001. Gongli Xiao, Li Liu, Hongyan Yang, Xingguo Jiang, Hongqing Wang, Xiaogang Liu, Haiou Li, Fabi Zhang, Tao Fu. Light Transmission Characteristics of Metal Curved Waveguide Based on Microcavity Coupling Structures[J]. Acta Optica Sinica, 2017, 37(12): 1213001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!