激光与光电子学进展, 2021, 58 (1): 0114004, 网络出版: 2021-01-28   

578.5 nm端面泵浦被动调Q拉曼黄光激光器 下载: 728次

578.5 nm End-Pumped Passively Q-switched Raman Yellow Laser
作者单位
暨南大学理工学院光电工程系,广东 广州 510632
引用该论文

赵辉, 王浩宇, 朱思祁, 尹浩, 李真, 陈振强. 578.5 nm端面泵浦被动调Q拉曼黄光激光器[J]. 激光与光电子学进展, 2021, 58(1): 0114004.

Zhao Hui, Wang Haoyu, Zhu Siqi, Yin Hao, Li Zhen, Chen Zhenqiang. 578.5 nm End-Pumped Passively Q-switched Raman Yellow Laser[J]. Laser & Optoelectronics Progress, 2021, 58(1): 0114004.

参考文献

[1] Georgiev D, Gapontsev V P, Dronov A G, et al. Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm[J]. Optics Express, 2005, 13(18): 6772-6776.

[2] Feng Y, Taylor L, Calia D B. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star[J]. Optics Express, 2009, 17(21): 19021-19026.

[3] Feng Y, Huang S H, Shirakawa A, et al. 589 nm light source based on Raman fiber laser[J]. Japanese Journal of Applied Physics, 2004, 43(6A): L722-L724.

[4] Castellano-Hernández E, Metz P W, Demesh M, et al. Efficient directly emitting high-power Tb 3+∶LiLuF4 laser operating at 587.5 nm in the yellow range[J]. Optics Letters, 2018, 43(19): 4791.

[5] Pask H M, Piper J A. Efficient all-solid-state yellow laser source producing 1.2-W average power[J]. Opt Lett, 1999, 24(21): 1490-1492.

[6] Chen Y F, Tsai S W. Diode-pumped-switched Nd∶ YVO4 yellow laser with intracavity sum-frequency mixing[J]. Optics Letters, 2002, 27(6): 397-399.

[7] Bolognesi G, Parisi D, Calonico D, et al. Yellow laser performance of Dy 3+ in co-doped Dy, Tb∶LiLuF4[J]. Optics Letters, 2014, 39(23): 6628-6631.

[8] Xia Z C, Yang F G, Qiao L, et al. End pumped yellow laser performance of Dy 3+∶ZnWO4[J]. Optics Communications, 2017, 387: 357-360.

[9] 郝二娟, 李特, 张里荃, 等. 全固态黄光激光器的实现方法[J]. 激光与红外, 2009, 39(7): 731-734.

    Hao E J, Li T, Zhang L Q, et al. Methods of obtaining all-solid-state yellow lasers[J]. Laser & Infrared, 2009, 39(7): 731-734.

[10] Yuan Y Z, Li B, Guo X Y. Laser diode pumped Nd∶YAG crystals frequency summing 589 nm yellow laser[J]. Optik, 2016, 127(2): 710-712.

[11] Wei L J, Zhu S Q, Zhou H Q, et al. SFG and SHG in a dual-wavelength Nd:YAG laser system[J]. Optik, 2018, 154: 711-716.

[12] Murray J T, Austin W L, Powell R C. Intracavity Raman conversion and Raman beam cleanup[J]. Optical Materials, 1999, 11(4): 353-371.

[13] Pask H M, Dekker P, Mildren R P, et al. Wavelength-versatile visible and UV sources based on crystalline Raman lasers[J]. Progress in Quantum Electronics, 2008, 32(3/4): 121-158.

[14] Lee A J, Pask H M, Piper J A, et al. An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission[J]. Optics Express, 2010, 18(6): 5984-5992.

[15] Zhu H, Duan Y, Zhang G, et al. Efficient second harmonic generation of double-end diffusion-bonded Nd∶YVO4 self-Raman laser producing 7.9 W yellow light[J]. Optics Express, 2009, 17(24): 21544-21550.

[16] Xu HH, Zhang XY, Wang QP, et al.Diode-pumped passively Q-switched Nd∶YAG/BaWO4/KTP yellow laser[C]//2012 Conference on Lasers and Electro-Optics (CLEO), May 6-11, 2012, San Jose, CA, USA.New York: IEEE Press, 2012: 1- 2.

[17] Zhu S Q, Jiang W, Liu Y M, et al. Pulse fluctuations caused by the thermal lens effect in a passively Q-switched laser system[J]. Journal of Russian Laser Research, 2015, 36(4): 377-384.

[18] Jiang W, Liu Y M, Chen W D, et al. Composite Yb:YAG/Cr 4+∶YAG/YAG crystal passively Q-switched lasers at 1030 nm[J]. Applied Optics, 2015, 54(7): 1834-1838.

[19] 王煜, 姜梦华, 惠勇凌, 等. 小时间抖动、高重复频率Nd∶YAG/Cr 4+∶YAG被动调Q微型激光器[J]. 光学学报, 2018, 38(10): 1014004.

    Wang Y, Jiang M H, Hui Y L, et al. Passively Q-switched Nd∶Nb∶YAG/Cr 4+∶YAG microchip laser with low time jitter and high repetition rate[J]. Acta Optica Sinica, 2018, 38(10): 1014004.

[20] 林伟平, 姜楠, 周唐建, 等. Yb∶YAG陶瓷平面波导1030 nm激光放大[J]. 中国激光, 2019, 46(5): 0501002.

    Lin W P, Jiang N, Zhou T J, et al. 1030 nm laser amplification of Yb∶YAG ceramic planar waveguide[J]. Chinese Journal of Lasers, 2019, 46(5): 0501002.

[21] Gao J, Dai X J, Zhang L, et al. All-solid-state continuous-wave yellow laser at 561 nm under in-band pumping[J]. Journal of the Optical Society of America B, 2013, 30(1): 95-98.

[22] Zhu H Y, Duan Y M, Zhang G, et al. Yellow-light generation of 57 W by intracavity doubling self-Raman laser of YVO4/Nd∶YVO4 composite[J]. Optics Letters, 2009, 34(18): 2763-2765.

[23] Zhang L, Yu Y Q, Guo Y Y, et al. Diode-end-pumped composite Nd∶YVO4 yellow laser based on intracavity frequency-doubled self-Raman laser[J]. Optics Communications, 2010, 283(19): 3761-3763.

[24] 耿鹰鸽, 李隆, 潘晓瑞, 等. 脉冲LD端面抽运变热导率方片Yb∶YAG晶体温度场[J]. 激光与光电子学进展, 2016, 53(8): 081401.

    Geng Y G, Li L, Pan X R, et al. Temperature field of pulsed LD end-pumped square Yb∶YAG crystal with variable thermal-conductivity[J]. Laser & Optoelectronics Progress, 2016, 53(8): 081401.

[25] Dong J, Bass M, Mao Y L, et al. Dependence of the Yb 3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet[J]. Journal of the Optical Society of America B, 2003, 20(9): 1975-1979.

[26] Dong J, Deng P, Liu Y, et al. Passively Q-switched Yb∶YAG laser with Cr 4+∶YAG as the saturable absorber[J]. Applied Optics, 2001, 40(24): 4303-4307.

[27] Bibeau C, Beach R J, Mitchell S C, et al. High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb∶YAG laser[J]. IEEE Journal of Quantum Electronics, 1998, 34(10): 2010-2019.

[28] Jaspan M A, Welford D, Russell J A. Passively Q-switched microlaser performance in the presence of pump-induced bleaching of the saturable absorber[J]. Applied Optics, 2004, 43(12): 2555-2560.

[29] Koerner J, Vorholt C, Liebetrau H, et al. Measurement of temperature-dependent absorption and emission spectra of Yb∶YAG, Yb∶LuAG, and Yb∶CaF2 between 20 ℃ and 200 ℃ and predictions on their influence on laser performance[J]. Journal of the Optical Society of America B, 2012, 29(9): 2493.

[30] Dong J, Ueda K, Kaminskii A A. Laser-diode pumped efficient Yb∶LuAG microchip lasers oscillating at 1030 and 1047 nm[J]. Laser Physics Letters, 2010, 7(10): 726-733.

[31] Ding S, Wang M, Wang S, et al. Investigation on LD end-pumped passively Q-switched c-cut Nd∶ YVO4 self-Raman laser[J]. Optics Express, 2013, 21(11): 13052-13061.

[32] Ding S H, Zhang X Y, Wang Q P, et al. Numerical modelling of passively Q-switched intracavity Raman lasers[J]. Journal of Physics D Applied Physics, 2007, 40(9): 2736.

赵辉, 王浩宇, 朱思祁, 尹浩, 李真, 陈振强. 578.5 nm端面泵浦被动调Q拉曼黄光激光器[J]. 激光与光电子学进展, 2021, 58(1): 0114004. Zhao Hui, Wang Haoyu, Zhu Siqi, Yin Hao, Li Zhen, Chen Zhenqiang. 578.5 nm End-Pumped Passively Q-switched Raman Yellow Laser[J]. Laser & Optoelectronics Progress, 2021, 58(1): 0114004.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!