激光与光电子学进展, 2019, 56 (11): 110601, 网络出版: 2019-06-13   

19束激光阵列光束相干传输的仿真研究 下载: 939次

Simulation of Coherent Propagation of Nineteen-Laser-Beam Array
作者单位
中国南方工业研究院探测与对抗技术研究所, 北京 102209
引用该论文

王彤璐, 孙鑫鹏, 李晔, 史俊锋, 徐林, 李朝阳, 臧彦楠. 19束激光阵列光束相干传输的仿真研究[J]. 激光与光电子学进展, 2019, 56(11): 110601.

Tonglu Wang, Xinpeng Sun, Ye Li, Junfeng Shi, Lin Xu, Zhaoyang Li, Yannan Zang. Simulation of Coherent Propagation of Nineteen-Laser-Beam Array[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110601.

参考文献

[1] 程雪, 王建立, 刘昌华. 高能光纤激光器光束合成技术[J]. 红外与激光工程, 2018, 47(1): 0103011.

    程雪, 王建立, 刘昌华. 高能光纤激光器光束合成技术[J]. 红外与激光工程, 2018, 47(1): 0103011.

    Cheng X, Wang J L, Liu C H. Beam combining of high energy fibre lasers[J]. Infrared and Laser Engineering, 2018, 47(1): 0103011.

    Cheng X, Wang J L, Liu C H. Beam combining of high energy fibre lasers[J]. Infrared and Laser Engineering, 2018, 47(1): 0103011.

[2] 杨昌盛, 徐善辉, 周军, 等. 大功率光纤激光材料与器件关键技术研究进展[J]. 中国科学:技术科学, 2017, 47(10): 1038-1048.

    杨昌盛, 徐善辉, 周军, 等. 大功率光纤激光材料与器件关键技术研究进展[J]. 中国科学:技术科学, 2017, 47(10): 1038-1048.

    Yang C S, Xu S H, Zhou J, et al. Research advance on the key technology of high-power fiber laser materials and components[J]. Scientia Sinica (Technologica), 2017, 47(10): 1038-1048.

    Yang C S, Xu S H, Zhou J, et al. Research advance on the key technology of high-power fiber laser materials and components[J]. Scientia Sinica (Technologica), 2017, 47(10): 1038-1048.

[3] 陈子伦, 雷成敏, 王泽锋, 等. 基于输出光纤为50 μm的7×1光纤功率合束器实现大于14 kW的高光束质量光纤激光合成[J]. 中国激光, 2018, 45(4): 0415001.

    陈子伦, 雷成敏, 王泽锋, 等. 基于输出光纤为50 μm的7×1光纤功率合束器实现大于14 kW的高光束质量光纤激光合成[J]. 中国激光, 2018, 45(4): 0415001.

    Chen Z L, Lei C M, Wang Z F, et al. High beam quality fiber laser synthesis of more than 14 kW on a 7×1 optical fiber power combiner with 50 μm output fiber[J]. Chinese Journal of Lasers, 2018, 45(4): 0415001.

    Chen Z L, Lei C M, Wang Z F, et al. High beam quality fiber laser synthesis of more than 14 kW on a 7×1 optical fiber power combiner with 50 μm output fiber[J]. Chinese Journal of Lasers, 2018, 45(4): 0415001.

[4] 李永忠, 范滇元. 光纤激光器光束的叠加技术[J]. 激光与光电子学进展, 2005, 42(9): 26-29.

    李永忠, 范滇元. 光纤激光器光束的叠加技术[J]. 激光与光电子学进展, 2005, 42(9): 26-29.

    Li Y Z, Fan D Y. Beam combining of fiber laser[J]. Laser & Optoelectronics Progress, 2005, 42(9): 26-29.

    Li Y Z, Fan D Y. Beam combining of fiber laser[J]. Laser & Optoelectronics Progress, 2005, 42(9): 26-29.

[5] 郑也, 杨依枫, 赵翔, 等. 高功率光纤激光光谱合成技术的研究进展[J]. 中国激光, 2017, 44(2): 0201002.

    郑也, 杨依枫, 赵翔, 等. 高功率光纤激光光谱合成技术的研究进展[J]. 中国激光, 2017, 44(2): 0201002.

    Zheng Y, Yang Y F, Zhao X, et al. Research progress on spectral beam combining technology of high-power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201002.

    Zheng Y, Yang Y F, Zhao X, et al. Research progress on spectral beam combining technology of high-power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201002.

[6] 高伟清. 大功率双包层光纤激光器的非线性和热效应[J]. 激光与红外, 2006, 36(9): 829-832.

    高伟清. 大功率双包层光纤激光器的非线性和热效应[J]. 激光与红外, 2006, 36(9): 829-832.

    Gao W Q. The nonlinearity and heat effect in double-clad fiber laser with high power[J]. Laser & Infrared, 2006, 36(9): 829-832.

    Gao W Q. The nonlinearity and heat effect in double-clad fiber laser with high power[J]. Laser & Infrared, 2006, 36(9): 829-832.

[7] 耿超, 杨燕, 李枫, 等. 光纤激光相干合成研究进展[J]. 光电工程, 2018, 45(3): 170692.

    耿超, 杨燕, 李枫, 等. 光纤激光相干合成研究进展[J]. 光电工程, 2018, 45(3): 170692.

    Geng C, Yang Y, Li F, et al. Research progress of fiber laser coherent combining[J]. Opto-Electronic Engineering, 2018, 45(3): 170692.

    Geng C, Yang Y, Li F, et al. Research progress of fiber laser coherent combining[J]. Opto-Electronic Engineering, 2018, 45(3): 170692.

[8] 姜曼, 马鹏飞, 周朴, 等. 基于亮度的激光光束合成系统性能[J]. 光学学报, 2017, 37(7): 0714001.

    姜曼, 马鹏飞, 周朴, 等. 基于亮度的激光光束合成系统性能[J]. 光学学报, 2017, 37(7): 0714001.

    Jiang M, Ma P F, Zhou P, et al. Performance of laser beam combination system based on brightness[J]. Acta Optica Sinica, 2017, 37(7): 0714001.

    Jiang M, Ma P F, Zhou P, et al. Performance of laser beam combination system based on brightness[J]. Acta Optica Sinica, 2017, 37(7): 0714001.

[9] Weyrauch T, Vorontsov M A, Carhart G W, et al. Experimental demonstration of coherent beam combining over a 7 km propagation path[J]. Optics Letters, 2011, 36(22): 4455-4457.

    Weyrauch T, Vorontsov M A, Carhart G W, et al. Experimental demonstration of coherent beam combining over a 7 km propagation path[J]. Optics Letters, 2011, 36(22): 4455-4457.

[10] Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 2011, 36(14): 2686-2688.

    Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 2011, 36(14): 2686-2688.

[11] 马阎星, 司磊, 周朴, 等. 高功率光纤激光相干合成关键技术[J]. 国防科技大学学报, 2012, 34(1): 38-42.

    马阎星, 司磊, 周朴, 等. 高功率光纤激光相干合成关键技术[J]. 国防科技大学学报, 2012, 34(1): 38-42.

    Ma Y X, Si L, Zhou P, et al. The key technologies in coherent beam combination of high power fiber laser[J]. Journal of National University of Defense Technology, 2012, 34(1): 38-42.

    Ma Y X, Si L, Zhou P, et al. The key technologies in coherent beam combination of high power fiber laser[J]. Journal of National University of Defense Technology, 2012, 34(1): 38-42.

[12] 王小林, 周朴, 粟荣涛, 等. 高功率光纤激光相干合成的现状、趋势与挑战[J]. 中国激光, 2017, 44(2): 0201001.

    王小林, 周朴, 粟荣涛, 等. 高功率光纤激光相干合成的现状、趋势与挑战[J]. 中国激光, 2017, 44(2): 0201001.

    Wang X L, Zhou P, Su R T, et al. Current situation, tendency and challenge of coherent combining of high power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201001.

    Wang X L, Zhou P, Su R T, et al. Current situation, tendency and challenge of coherent combining of high power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201001.

[13] Xue Y H, He B, Zhou J, et al. High power passive phase locking of four Yb-doped fiber amplifiers by an all-optical feedback loop[J]. Chinese Physics Letters, 2011, 28(5): 054212.

    Xue Y H, He B, Zhou J, et al. High power passive phase locking of four Yb-doped fiber amplifiers by an all-optical feedback loop[J]. Chinese Physics Letters, 2011, 28(5): 054212.

[14] Flores A, Ehrehreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[J]. Proceedings of SPIE, 2016, 9728: 97281Y.

    Flores A, Ehrehreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[J]. Proceedings of SPIE, 2016, 9728: 97281Y.

[15] 刘毅. 首台2万瓦光纤激光器正式装机打破国外技术垄断[J]. 中国设备工程, 2017( 1): 4.

    刘毅. 首台2万瓦光纤激光器正式装机打破国外技术垄断[J]. 中国设备工程, 2017( 1): 4.

    LiuY. The first 2 megawatts fiber laser officially installed to break the foreign technology monopoly[J]. China Plant Engineering, 2017( 1): 4.

    LiuY. The first 2 megawatts fiber laser officially installed to break the foreign technology monopoly[J]. China Plant Engineering, 2017( 1): 4.

[16] Nilsson J, Sahu J K, Jeong Y, et al. High-power fiber lasers: new developments[J]. Proceedings of SPIE, 2003, 4974: 50-59.

    Nilsson J, Sahu J K, Jeong Y, et al. High-power fiber lasers: new developments[J]. Proceedings of SPIE, 2003, 4974: 50-59.

[17] 楼祺洪, 周军, 朱健强, 等. 高功率光纤激光器研究进展[J]. 红外与激光工程, 2006, 35(2): 135-138.

    楼祺洪, 周军, 朱健强, 等. 高功率光纤激光器研究进展[J]. 红外与激光工程, 2006, 35(2): 135-138.

    Lou Q H, Zhou J, Zhu J Q, et al. Recent progress of high-power fiber lasers[J]. Infrared and Laser Engineering, 2006, 35(2): 135-138.

    Lou Q H, Zhou J, Zhu J Q, et al. Recent progress of high-power fiber lasers[J]. Infrared and Laser Engineering, 2006, 35(2): 135-138.

[18] 肖瑞, 侯静, 姜宗福. 光纤激光器的相干合成技术[J]. 激光技术, 2005, 29(5): 516-518, 532.

    肖瑞, 侯静, 姜宗福. 光纤激光器的相干合成技术[J]. 激光技术, 2005, 29(5): 516-518, 532.

    Xiao R, Hou J, Jiang Z F. Coherent combining of fiber lasers[J]. Laser Technology, 2005, 29(5): 516-518, 532.

    Xiao R, Hou J, Jiang Z F. Coherent combining of fiber lasers[J]. Laser Technology, 2005, 29(5): 516-518, 532.

[19] 范馨燕. 主动锁相光纤激光相干合成技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2010: 5- 9.

    范馨燕. 主动锁相光纤激光相干合成技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2010: 5- 9.

    Fan XY. Research of active phase-locking fiber laser coherent combining technique[D]. Harbin: Harbin Institute of Technology, 2010: 5- 9.

    Fan XY. Research of active phase-locking fiber laser coherent combining technique[D]. Harbin: Harbin Institute of Technology, 2010: 5- 9.

[20] 李兴珂, 何云涛. 相干合成中的随机并行梯度下降算法性能研究[J]. 光学学报, 2016, 36(12): 1201001.

    李兴珂, 何云涛. 相干合成中的随机并行梯度下降算法性能研究[J]. 光学学报, 2016, 36(12): 1201001.

    Li X K, He Y T. Performance of stochastic parallel gradient descent algorithm in coherent combination[J]. Acta Optica Sinica, 2016, 36(12): 1201001.

    Li X K, He Y T. Performance of stochastic parallel gradient descent algorithm in coherent combination[J]. Acta Optica Sinica, 2016, 36(12): 1201001.

[21] 张森, 张军伟, 母杰, 等. 基于随机并行梯度下降算法的相干合成动态相差控制与带宽分析[J]. 光学学报, 2018, 38(5): 0514003.

    张森, 张军伟, 母杰, 等. 基于随机并行梯度下降算法的相干合成动态相差控制与带宽分析[J]. 光学学报, 2018, 38(5): 0514003.

    Zhang S, Zhang J W, Mu J, et al. Dynamical phase error control and bandwidth analysis for coherent beam combination based on stochastic parallel gradient descent algorithm[J]. Acta Optica Sinica, 2018, 38(5): 0514003.

    Zhang S, Zhang J W, Mu J, et al. Dynamical phase error control and bandwidth analysis for coherent beam combination based on stochastic parallel gradient descent algorithm[J]. Acta Optica Sinica, 2018, 38(5): 0514003.

[22] Zhou P, Liu Z J, Xu X J, et al. Numerical analysis of the effects of aberrations on coherently combined fiber laser beams[J]. Applied Optics, 2008, 47(18): 3350-3559.

    Zhou P, Liu Z J, Xu X J, et al. Numerical analysis of the effects of aberrations on coherently combined fiber laser beams[J]. Applied Optics, 2008, 47(18): 3350-3559.

[23] 唐前进, 施翔春, 胡企铨. 填充因子对激光组束远场功率分布的影响[J]. 推进技术, 2007, 28(5): 566-569.

    唐前进, 施翔春, 胡企铨. 填充因子对激光组束远场功率分布的影响[J]. 推进技术, 2007, 28(5): 566-569.

    Tang Q J, Shi X C, Hu Q Q. Effect of the filled factor on the far field profiles of laser beam combination[J]. Journal of Propulsion Technology, 2007, 28(5): 566-569.

    Tang Q J, Shi X C, Hu Q Q. Effect of the filled factor on the far field profiles of laser beam combination[J]. Journal of Propulsion Technology, 2007, 28(5): 566-569.

[24] 闫爱民, 刘立人, 刘德安, 等. 光纤激光阵列锁相和孔径装填技术研究进展[J]. 激光与光电子学进展, 2008, 45(8): 33-39.

    闫爱民, 刘立人, 刘德安, 等. 光纤激光阵列锁相和孔径装填技术研究进展[J]. 激光与光电子学进展, 2008, 45(8): 33-39.

    Yan A M, Liu L R, Liu D A, et al. Recent progress in phase-locking and aperture filling of fiber laser arrays[J]. Laser & Optoelectronics Progress, 2008, 45(8): 33-39.

    Yan A M, Liu L R, Liu D A, et al. Recent progress in phase-locking and aperture filling of fiber laser arrays[J]. Laser & Optoelectronics Progress, 2008, 45(8): 33-39.

[25] Vorontsov M A, Lachinova S L. Laser beam projection with adaptive array of fiber collimators. I. Basic considerations for analysis[J]. Journal of the Optical Society of America A, 2008, 25(8): 1949-1959.

    Vorontsov M A, Lachinova S L. Laser beam projection with adaptive array of fiber collimators. I. Basic considerations for analysis[J]. Journal of the Optical Society of America A, 2008, 25(8): 1949-1959.

[26] ZhouP, Wang XL, Ma YX, et al. Optimal truncation of element beam in a coherent fiber laser array[J]. Chinese Physics Letters, 2009( 4): 116- 118.

    ZhouP, Wang XL, Ma YX, et al. Optimal truncation of element beam in a coherent fiber laser array[J]. Chinese Physics Letters, 2009( 4): 116- 118.

[27] 杜祥琬. 实际强激光远场靶面上光束质量的评价因素[J]. 中国激光, 1997, 24(4): 327-332.

    杜祥琬. 实际强激光远场靶面上光束质量的评价因素[J]. 中国激光, 1997, 24(4): 327-332.

    Du X W. Factors for evaluating beam guality of a real high power laser on the target surface in far field[J]. Chinese Journal of Lasers, 1997, 24(4): 327-332.

    Du X W. Factors for evaluating beam guality of a real high power laser on the target surface in far field[J]. Chinese Journal of Lasers, 1997, 24(4): 327-332.

[28] 贺元兴. 激光光束质量评价及测量方法研究[D]. 长沙: 国防科技大学, 2012: 3- 6.

    贺元兴. 激光光束质量评价及测量方法研究[D]. 长沙: 国防科技大学, 2012: 3- 6.

    He YX. Study of evaluating and measuring laser beam quality[D]. Changsha: National University of Defense Technology, 2012: 3- 6.

    He YX. Study of evaluating and measuring laser beam quality[D]. Changsha: National University of Defense Technology, 2012: 3- 6.

[29] 贺元兴, 李新阳. 激光束远场能量集中度的评价指标探讨[J]. 激光与光电子学进展, 2012, 49(5): 051403.

    贺元兴, 李新阳. 激光束远场能量集中度的评价指标探讨[J]. 激光与光电子学进展, 2012, 49(5): 051403.

    He Y X, Li X Y. Study on standard for evaluating the far-field energy focusability of laser beams[J]. Laser & Optoelectronics Progress, 2012, 49(5): 051403.

    He Y X, Li X Y. Study on standard for evaluating the far-field energy focusability of laser beams[J]. Laser & Optoelectronics Progress, 2012, 49(5): 051403.

[30] 刘泽金, 周朴, 许晓军. 高能激光光束质量通用评价标准的探讨[J]. 中国激光, 2009, 36(4): 773-778.

    刘泽金, 周朴, 许晓军. 高能激光光束质量通用评价标准的探讨[J]. 中国激光, 2009, 36(4): 773-778.

    Liu Z J, Zhou P, Xu X J. Study on universal standard for evaluating high energy beam quality[J]. Chinese Journal of Lasers, 2009, 36(4): 773-778.

    Liu Z J, Zhou P, Xu X J. Study on universal standard for evaluating high energy beam quality[J]. Chinese Journal of Lasers, 2009, 36(4): 773-778.

[31] 黄印博, 王英俭. 跟踪抖动对激光湍流大气传输光束扩展的影响[J]. 光学学报, 2005, 25(2): 152-156.

    黄印博, 王英俭. 跟踪抖动对激光湍流大气传输光束扩展的影响[J]. 光学学报, 2005, 25(2): 152-156.

    Huang Y B, Wang Y J. The effect of tracking jitter on the beam spreading induced by atmospheric turbulence[J]. Acta Optica Sinica, 2005, 25(2): 152-156.

    Huang Y B, Wang Y J. The effect of tracking jitter on the beam spreading induced by atmospheric turbulence[J]. Acta Optica Sinica, 2005, 25(2): 152-156.

[32] McKechnie TS. General theory of light propagation and imaging through the atmosphere[M]. Cham: Springer, 2016: 162- 165.

    McKechnie TS. General theory of light propagation and imaging through the atmosphere[M]. Cham: Springer, 2016: 162- 165.

[33] von Kármán T. Progress in the statistical theory of turbulence[J]. Proceedings of the National Academy of Sciences, 1948, 34(11): 530-539.

    von Kármán T. Progress in the statistical theory of turbulence[J]. Proceedings of the National Academy of Sciences, 1948, 34(11): 530-539.

[34] Fu S Y, Wang T L, Zhang S K, et al. Non-probe compensation of optical vortices carrying orbital angular momentum[J]. Photonics Research, 2017, 5(3): 251-255.

    Fu S Y, Wang T L, Zhang S K, et al. Non-probe compensation of optical vortices carrying orbital angular momentum[J]. Photonics Research, 2017, 5(3): 251-255.

[35] Fu S Y, Gao C Q. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams[J]. Photonics Research, 2016, 4(5): B1-B4.

    Fu S Y, Gao C Q. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams[J]. Photonics Research, 2016, 4(5): B1-B4.

王彤璐, 孙鑫鹏, 李晔, 史俊锋, 徐林, 李朝阳, 臧彦楠. 19束激光阵列光束相干传输的仿真研究[J]. 激光与光电子学进展, 2019, 56(11): 110601. Tonglu Wang, Xinpeng Sun, Ye Li, Junfeng Shi, Lin Xu, Zhaoyang Li, Yannan Zang. Simulation of Coherent Propagation of Nineteen-Laser-Beam Array[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110601.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!