光学 精密工程, 2015, 23 (1): 56, 网络出版: 2015-02-15   

结构光测量中相位误差的过补偿与欠补偿校正

Correction of phase error overcompensation and under-compensation in structured light measurement
作者单位
1 东南大学 生物科学与医学工程学院, 江苏 南京 210096
2 东南大学 苏州研究院, 江苏 苏州 215123
摘要
针对现有结构光测量中采用的相位误差补偿算法存在的相位误差过补偿或欠补偿问题, 提出了一种新的相位补偿误差校正算法。推导了环境光下四步相移的相位误差数学模型, 解释了相位误差过补偿、欠补偿的产生原因;通过数学推导获得相位误差的解析表达式, 提出了相位误差过补偿、欠补偿的校正算法。该方法通过向标定平面投射4步相移图像、16步相移图像与黑白图像获得相位误差系数;然后在8种不同环境光条件下重复这一步骤获得多组系数;最后运用参数拟合法获得相位误差数学模型的具体表达式。实验结果表明: 无论在黑暗环境还是光环境下, 利用该修正方法进行相位误差补偿后均可使相位精度达到0.002 rad, 比进行相位误差补偿前提高了8.6倍左右, 比查找表(LUT)提高了2.5倍左右。该算法精度高, 速度快, 能有效解决相位误差过补偿、欠补偿的问题。
Abstract
In structured light measurement, the current phase error compensation algorithms always lead to phase error overcompensation or under-compensation as the ambient light is varied. Therefore, a new correction method for the phase compensation errors was proposed. Based on analyzing the impact of ambient light on phase errors of four-step phase-shifting method, the reasons of phase error overcompensation and under-compensation were illuminated, the expression of the phase errors was deduced and a method to correct the phase compensation error was proposed. To compensate phase error accurately, a group of four-step phase-shifting images, sixteen-step phase-shifting images, black and white images were projected to the calibration plane, then the operation was repeated in eight different ambient light conditions to obtain several groups of coefficients. Subsequently, the analytical expression was obtained by a curve fitting. Experimental results show that the accuracy of phase error compensation is 0.002 rad no matter under dark or light environments when the method is applied, which is about 9.6 times higher than that without phase error compensation and about 3.5 times higher than that with Look-Up-Table(LUT) compensation only. This method is characterized by higher accuracy and reliability and can be used to compensate the phase errors in varied ambient lights accurately.
参考文献

[1] 陈晓荣, 蔡萍, 施文康. 光学非接触三维形貌测量技术新进展 [J]. 光学精密工程, 2002, 10(5): 528-532.

    CHEN X R, CAI P, SHI W K. The latest development of optical noncontact 3D profile measurement [J]. Opt. Precision Eng., 2002, 10(5): 528-532. (in Chinese)

[2] ZHOU P, LIU X, ZHU T. Analysis of the relationship between fringe angle and three-dimensional profilometry system sensitivity [J]. Applied Optics, 2014, 53(13): 2929-2935.

[3] 林焕, 马志峰, 姚春海, 等. 基于格雷码-相移的双目三维测量方法研究 [J]. 电子学报, 2013, 41(1): 24-28.

    LIN H, MA ZH F, YAO CH H, et al.. 3D measurement technology based on binocular vision using a combination of gray code and phase-shift structured light [J]. Acta Electronic Sinica, 2013, 41(1): 24-28. (in Chinese)

[4] 许丽, 张之江. 结构光测量系统的误差传递分析 [J]. 光学精密工程, 2009, 17(2): 306-313.

    XU L, ZHAN ZH J. Error propagation analysis of structured light system [J]. Opt. Precision Eng., 2009, 17(2): 306-313. (in Chinese)

[5] 贾小军, 张之江, 曹芳, 等. 编码结构光系统模型及误差分析 [J]. 光学精密工程, 2011, 19(4):717-726.

    JIA X J, ZHANG ZH J, CAO F, et al.. System model and error analysis for structure light [J]. Opt. Precision Eng., 2011, 19(4)::717-726. (in Chinese)

[6] ZHANG S, YAU S T. Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector [J]. Applied Optics, 2007, 46(1): 36-43.

[7] PAN B, KEMAO Q, HUANG L, et al.. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry [J]. Optics Letters, 2009, 34(4): 416-418.

[8] CHEN X, XI J, JIN Y. Phase error compensation method using smoothing spline approximation for a three-dimensional shape measurement system based on gray-code and phase-shift light projection [J]. Optical Engineering, 2008, 47(11): 113601-113601-9.

[9] GUO H, HE H, CHEN M. Gamma correction for digital fringe projection profilometry [J]. Applied Optics, 2004, 43(14): 2906-2914.

[10] LILLEY F, LALOR M J, BURTON D R. Robust fringe analysis system for human body shape measurement [J]. Optical Engineering, 2000, 39(1): 187-195.

[11] ZHOU P, LIU X, HE Y, et al.. Phase error analysis and compensation considering ambient light for phase measuring profilometry [J]. Optics and Lasers in Engineering, 2014, 55: 99-104.

[12] LIU K, WANG Y, LAU D L, et al.. Gamma model and its analysis for phase measuring profilometry [J]. JOSA A, 2010, 27(3): 553-562.

[13] HOANG T, PAN B, NGUYEN D, et al.. Generic gamma correction for accuracy enhancement in fringe-projection profilometry [J]. Optics Letters, 2010, 35(12): 1992-1994.

[14] LI Z, LI Y. Gamma-distorted fringe image modeling and accurate gamma correction for fast phase measuring profilometry [J]. Optics Letters, 2011, 36(2): 154-156.

[15] ZHANG X, ZHU L, LI Y, et al.. Generic non-sinusoidal fringe model and gamma calibration in phase measuring profilometry [J]. JOSA A, 2012, 29(6): 1047-1058.

周平, 朱统晶, 刘欣冉, 袁骏杰. 结构光测量中相位误差的过补偿与欠补偿校正[J]. 光学 精密工程, 2015, 23(1): 56. ZHOU Ping, ZHU Tong-jing, LIU Xin-ran, YUAN Jun-jie. Correction of phase error overcompensation and under-compensation in structured light measurement[J]. Optics and Precision Engineering, 2015, 23(1): 56.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!