光子学报, 2018, 47 (8): 0804001, 网络出版: 2018-09-16  

具有混合结构的三基色有机光电探测器的光电特性

Photoelectric Characteristics of Trichromatic Organic Photodetectors with Hybrid Structure
作者单位
西安理工大学 自动化与信息工程学院, 西安 710048
引用该论文

安涛, 刘丹, 吴俊宇. 具有混合结构的三基色有机光电探测器的光电特性[J]. 光子学报, 2018, 47(8): 0804001.

AN Tao, LIU Dan, WU Jun-yu. Photoelectric Characteristics of Trichromatic Organic Photodetectors with Hybrid Structure[J]. ACTA PHOTONICA SINICA, 2018, 47(8): 0804001.

参考文献

[1] PEUMANS P, YAKIMOV A, FORREST S R. Small molecular weight organic thin-film photodetectors and solar cells[J]. Journal of Applied Physics, 2003, 93(7): 3693-3723.

[2] SCHILINSKY P, WALDAUF C, HAUCH J, et al. Polymer photovoltaic detectors: progress and recent developments[J]. Thin Solid Films, 2004, 451-452: 105-108.

[3] GUERRERO A, MONTCADA N, AJURIA J, et al. Charge carrier transport and contact selectivity limit the operation of PTB7-based organic solar cells of varying active layer thickness[J]. Journal of Materials Chemistry A, 2013, 1(39): 12345-12354.

[4] CHEN H Y, LO M K F, YANG G, et al. Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene[J]. Nature Nanotechnology, 2008, 3(9): 543-547.

[5] YANG D, ZHOU X, MA D. Fast response organic photodetectors with high detectivity based on rubrene and C60[J]. Organic Electronics, 2013, 14(11): 3019-3023.

[6] WU S, YANG J, YE W, et al. Study on interface engineering of layer-by-layer structure for applications in organic photodetector[J]. Synthetic Metals, 2018, 235: 16-19.

[7] DANG M T, HIRSCH L, WANTZ G. P3HT: PCBM, best seller in polymer photovoltaic research.[J]. Advanced Materials, 2011, 23(31): 3597-3602.

[8] YOU J, CHEN C C, DOU L, et al. Metal oxide nanoparticles as an electron-transport layer in high-performance and stable inverted polymer solar cells[J]. Advanced Materials, 2012, 24(38): 5267.

[9] JANSEN-VAN VUUREN R D, ARMIN A, PANDEY A K, et al. Organic photodiodes: the future of full color detection and image sensing[J]. Advanced Materials, 2016, 28(24): 4766-4802.

[10] PIERRE A, ARIAS A C. Solution-processed image sensors on flexible substrates[J]. 2016, 1(4): 043001.

[11] OSENI S O, MOLA G T. Properties of functional layers in inverted thin film organic solar cells[J]. Solar Energy Materials & Solar Cells, 2017, 160: 241-256.

[12] PICKETT A, MOHAPATRA A, LAUDARI A, et al. Hybrid ZnO-organic semiconductor interfaces in photodetectors: a comparison of two near-infrared donor-acceptor copolymers[J]. Organic Electronics, 2017, 45: 115-123.

[13] YU G, GAO J, HUMMELEN J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270(5243): 1789-1791.

[14] BARTYNSKI A N, TRINH C, PANDA A, et al. A fullerene-based organic exciton blocking layer with high electron conductivity[J]. Nano Letters, 2013, 13(7): 3315-3320.

[15] SCHWARZ C, BASSLER H, BAUER I, et al. Does conjugation help exciton dissociation a study on poly(p-phenylene)s in planar heterojunctions with C60 or TNF[J]. Advanced Materials, 2012, 24(7): 922-925.

[16] MAQSOOD I, CUNDY L D, BIESECKER M, et al. Monte Carlo simulation of Frster resonance energy transfer in 3D nanoscale organic bulk heterojunction morphologies[J]. Journal of Physical Chemistry C, 2013, 117(41): 21086-21095.

[17] SAMMITO D, ROMANATO F, ZACCO G, et al. Light absorption enhancement in heterostructure organic solar cells through the integration of 1-D plasmonic gratings[J]. Optics Express, 2012, 20(14): A476-A488.

[18] LEE E, KIM C. Analysis and optimization of surface plasmon-enhanced organic solar cells with a metallic crossed grating electrode[J]. Optics Express, 2012, 20(S5): A740-A753.

[19] ZHENG Y, JR W J P, KOMINO T, et al. Highly efficient bulk heterojunction photovoltaic cells based on C70 and tetraphenyldibenzoperiflanthene[J]. Applied Physics Letters, 2013, 102(14): 60.

[20] HALLS J J M, PICHLER K, FRIEND R H, et al. Exciton diffusion and dissociation in a poly(p‐phenylenevinylene)/C60 heterojunction photovoltaic cell[J]. Applied Physics Letters, 1996, 68(22): 3120-3122.

[21] LEIJTENS T, LIM J, TEUSCHER J, et al. Charge density dependent mobility of organic hole-transporters and mesoporous TiO2 determined by transient mobility spectroscopy: implications to dye-sensitized and organic solar cells[J]. Advanced Materials, 2013, 25(23): 3227-3233.

[22] YANG S H, MI Y C, JO S G, et al. Photoresponsive ambipolar transport characteristics of organic thin film transistors using soluble HB-ant-THT and PCBM composites[J]. Synthetic Metals, 2012, 162(3-4): 332-336.

[23] SHUTTLE C G, HAMILTON R, NELSON J, et al. Measurement of charge-density dependence of carrier mobility in an organic semiconductor blend[J]. Advanced Functional Materials, 2010, 20(5): 698-702.

[24] LEE J K, MA W L, BRABEC C J, et al. Processing additives for improved efficiency from bulk heterojunction solar cells[J]. Journal of the American Chemical Society, 2008, 130(11): 3619-3623.

[25] ABBAS M, TEKIN N. Balanced charge carrier mobilities in bulk heterojunction organic solar cells[J]. Applied Physics Letters, 2012, 101(7): 073302.

[26] LEI T, DOU J H, PEI J. Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors[J]. Advanced Materials, 2012, 24(48): 6457.

[27] VAKHSHOURI K, KOZUB D R, WANG C, et al. Effect of miscibility and percolation on electron transport in amorphous poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester blends[J]. Physical Review Letters, 2012, 108(2): 026601.

[28] JANSSEN, AGUIRRE, GOOVAERTS, et al. Optimization of morphology of P3HT/PCBM films for organic solar cells: effects of thermal treatments and spin coating solvents[J]. European Physical Journal Applied Physics, 2007, 37(3): 40-43.

[29] YU D, YANG Y, DURSTOCK M, et al. Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices[J]. Acs Nano, 2010, 4(10): 5633.

[30] ZHAO C, QIAO X, CHEN B, et al. Thermal annealing effect on internal electrical polarization in organic solar cells[J]. Organic Electronics, 2013, 14(9): 2192-2197.

[31] TANAKA H, ABE Y, MATSUO Y, et al. An amorphous mesophase generated by thermal annealing for high-performance organic photovoltaic devices[J]. Advanced Materials, 2012, 24(26): 3521.

[32] HOWARD I A, MAUER R, MEISTER M, et al. Effect of morphology on ultrafast free carrier generation in polythiophene: fullerene organic solar cells[J]. Journal of the American Chemical Society, 2010, 132(42): 14866-14876.

[33] REDDY S Y, KUPPA V K. Molecular dynamics simulations of organic photovoltaic materials: Investigating the formation of π-stacked thiophene clusters in oligothiophene/fullerene blends[J]. Synthetic Metals, 2012, 162(23): 2117-2124.

安涛, 刘丹, 吴俊宇. 具有混合结构的三基色有机光电探测器的光电特性[J]. 光子学报, 2018, 47(8): 0804001. AN Tao, LIU Dan, WU Jun-yu. Photoelectric Characteristics of Trichromatic Organic Photodetectors with Hybrid Structure[J]. ACTA PHOTONICA SINICA, 2018, 47(8): 0804001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!