光子学报, 2018, 47 (8): 0804001, 网络出版: 2018-09-16  

具有混合结构的三基色有机光电探测器的光电特性

Photoelectric Characteristics of Trichromatic Organic Photodetectors with Hybrid Structure
作者单位
西安理工大学 自动化与信息工程学院, 西安 710048
摘要
采用溶液旋涂和高真空蒸镀工艺制备了平面和体异质结混合型器件结构的三基色有机光电探测器, 利用实验分步探究其不同组分的活性层厚度、混合度以及前置吸收层对器件光电特性的影响.在此基础上, 对三基色有机光电探测器进行样品制备及测试.结果表明, 混合型结构的光电探测器件对光的吸收几乎覆盖整个可见光区域, 对350~700 nm范围的光呈现出类似于平台式的宽光谱响应.该器件在-1 V偏置电压下, 对红、绿、蓝光的比探测率分别为2.89×1011 Jones、3.22×1011 Jones、1.97×1011 Jones, 表明该器件对红、绿、蓝光有较好探测效果, 尤其对红光的探测率有3~4倍提升.
Abstract
By adopting solution spin coating and high-vacuum evaporation process, trichromatic organic photodetectors with planar and heterojunction hybrid device structures were prepared. The experiment was used to explore the active layer thickness, mixing degree of different components and the influence of the pre-absorption layer on the photoelectric properties of the device. On this basis, sample preparation and testing of trichromatic organic photodetectors were performed. The results show that the absorption of light by the photodetector device of the hybrid structure covers almost the entire visible light region, and exhibits a broad spectrum response similar to that of the platform-type light in the range of 350~700 nm.Under the bias voltage of -1 V, the detectivity of red, green, and blue light are 2.89×1011 Jones, 3.22×1011 Jones, and 1.97×1011 Jones, respectively. It shows that the device has good detection effects on red, green and blue light, in particular, the detectivity of red light rise up 3 to 4 times.
参考文献

[1] PEUMANS P, YAKIMOV A, FORREST S R. Small molecular weight organic thin-film photodetectors and solar cells[J]. Journal of Applied Physics, 2003, 93(7): 3693-3723.

[2] SCHILINSKY P, WALDAUF C, HAUCH J, et al. Polymer photovoltaic detectors: progress and recent developments[J]. Thin Solid Films, 2004, 451-452: 105-108.

[3] GUERRERO A, MONTCADA N, AJURIA J, et al. Charge carrier transport and contact selectivity limit the operation of PTB7-based organic solar cells of varying active layer thickness[J]. Journal of Materials Chemistry A, 2013, 1(39): 12345-12354.

[4] CHEN H Y, LO M K F, YANG G, et al. Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene[J]. Nature Nanotechnology, 2008, 3(9): 543-547.

[5] YANG D, ZHOU X, MA D. Fast response organic photodetectors with high detectivity based on rubrene and C60[J]. Organic Electronics, 2013, 14(11): 3019-3023.

[6] WU S, YANG J, YE W, et al. Study on interface engineering of layer-by-layer structure for applications in organic photodetector[J]. Synthetic Metals, 2018, 235: 16-19.

[7] DANG M T, HIRSCH L, WANTZ G. P3HT: PCBM, best seller in polymer photovoltaic research.[J]. Advanced Materials, 2011, 23(31): 3597-3602.

[8] YOU J, CHEN C C, DOU L, et al. Metal oxide nanoparticles as an electron-transport layer in high-performance and stable inverted polymer solar cells[J]. Advanced Materials, 2012, 24(38): 5267.

[9] JANSEN-VAN VUUREN R D, ARMIN A, PANDEY A K, et al. Organic photodiodes: the future of full color detection and image sensing[J]. Advanced Materials, 2016, 28(24): 4766-4802.

[10] PIERRE A, ARIAS A C. Solution-processed image sensors on flexible substrates[J]. 2016, 1(4): 043001.

[11] OSENI S O, MOLA G T. Properties of functional layers in inverted thin film organic solar cells[J]. Solar Energy Materials & Solar Cells, 2017, 160: 241-256.

[12] PICKETT A, MOHAPATRA A, LAUDARI A, et al. Hybrid ZnO-organic semiconductor interfaces in photodetectors: a comparison of two near-infrared donor-acceptor copolymers[J]. Organic Electronics, 2017, 45: 115-123.

[13] YU G, GAO J, HUMMELEN J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270(5243): 1789-1791.

[14] BARTYNSKI A N, TRINH C, PANDA A, et al. A fullerene-based organic exciton blocking layer with high electron conductivity[J]. Nano Letters, 2013, 13(7): 3315-3320.

[15] SCHWARZ C, BASSLER H, BAUER I, et al. Does conjugation help exciton dissociation a study on poly(p-phenylene)s in planar heterojunctions with C60 or TNF[J]. Advanced Materials, 2012, 24(7): 922-925.

[16] MAQSOOD I, CUNDY L D, BIESECKER M, et al. Monte Carlo simulation of Frster resonance energy transfer in 3D nanoscale organic bulk heterojunction morphologies[J]. Journal of Physical Chemistry C, 2013, 117(41): 21086-21095.

[17] SAMMITO D, ROMANATO F, ZACCO G, et al. Light absorption enhancement in heterostructure organic solar cells through the integration of 1-D plasmonic gratings[J]. Optics Express, 2012, 20(14): A476-A488.

[18] LEE E, KIM C. Analysis and optimization of surface plasmon-enhanced organic solar cells with a metallic crossed grating electrode[J]. Optics Express, 2012, 20(S5): A740-A753.

[19] ZHENG Y, JR W J P, KOMINO T, et al. Highly efficient bulk heterojunction photovoltaic cells based on C70 and tetraphenyldibenzoperiflanthene[J]. Applied Physics Letters, 2013, 102(14): 60.

[20] HALLS J J M, PICHLER K, FRIEND R H, et al. Exciton diffusion and dissociation in a poly(p‐phenylenevinylene)/C60 heterojunction photovoltaic cell[J]. Applied Physics Letters, 1996, 68(22): 3120-3122.

[21] LEIJTENS T, LIM J, TEUSCHER J, et al. Charge density dependent mobility of organic hole-transporters and mesoporous TiO2 determined by transient mobility spectroscopy: implications to dye-sensitized and organic solar cells[J]. Advanced Materials, 2013, 25(23): 3227-3233.

[22] YANG S H, MI Y C, JO S G, et al. Photoresponsive ambipolar transport characteristics of organic thin film transistors using soluble HB-ant-THT and PCBM composites[J]. Synthetic Metals, 2012, 162(3-4): 332-336.

[23] SHUTTLE C G, HAMILTON R, NELSON J, et al. Measurement of charge-density dependence of carrier mobility in an organic semiconductor blend[J]. Advanced Functional Materials, 2010, 20(5): 698-702.

[24] LEE J K, MA W L, BRABEC C J, et al. Processing additives for improved efficiency from bulk heterojunction solar cells[J]. Journal of the American Chemical Society, 2008, 130(11): 3619-3623.

[25] ABBAS M, TEKIN N. Balanced charge carrier mobilities in bulk heterojunction organic solar cells[J]. Applied Physics Letters, 2012, 101(7): 073302.

[26] LEI T, DOU J H, PEI J. Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors[J]. Advanced Materials, 2012, 24(48): 6457.

[27] VAKHSHOURI K, KOZUB D R, WANG C, et al. Effect of miscibility and percolation on electron transport in amorphous poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester blends[J]. Physical Review Letters, 2012, 108(2): 026601.

[28] JANSSEN, AGUIRRE, GOOVAERTS, et al. Optimization of morphology of P3HT/PCBM films for organic solar cells: effects of thermal treatments and spin coating solvents[J]. European Physical Journal Applied Physics, 2007, 37(3): 40-43.

[29] YU D, YANG Y, DURSTOCK M, et al. Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices[J]. Acs Nano, 2010, 4(10): 5633.

[30] ZHAO C, QIAO X, CHEN B, et al. Thermal annealing effect on internal electrical polarization in organic solar cells[J]. Organic Electronics, 2013, 14(9): 2192-2197.

[31] TANAKA H, ABE Y, MATSUO Y, et al. An amorphous mesophase generated by thermal annealing for high-performance organic photovoltaic devices[J]. Advanced Materials, 2012, 24(26): 3521.

[32] HOWARD I A, MAUER R, MEISTER M, et al. Effect of morphology on ultrafast free carrier generation in polythiophene: fullerene organic solar cells[J]. Journal of the American Chemical Society, 2010, 132(42): 14866-14876.

[33] REDDY S Y, KUPPA V K. Molecular dynamics simulations of organic photovoltaic materials: Investigating the formation of π-stacked thiophene clusters in oligothiophene/fullerene blends[J]. Synthetic Metals, 2012, 162(23): 2117-2124.

安涛, 刘丹, 吴俊宇. 具有混合结构的三基色有机光电探测器的光电特性[J]. 光子学报, 2018, 47(8): 0804001. AN Tao, LIU Dan, WU Jun-yu. Photoelectric Characteristics of Trichromatic Organic Photodetectors with Hybrid Structure[J]. ACTA PHOTONICA SINICA, 2018, 47(8): 0804001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!