Matter and Radiation at Extremes, 2018, 3 (4): 165, Published Online: Oct. 2, 2018  

Unraveling the surface chemistry processes in lithiated and boronized plasma material interfaces under extreme conditions

Author Affiliations
1 Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY 11794-5250, USA
2 Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, IL 61801, USA
3 Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
Copy Citation Text

P.S. Krstic, J.P. Allain, F.J. Dominguez-Gutierrez, F. Bedoya. Unraveling the surface chemistry processes in lithiated and boronized plasma material interfaces under extreme conditions[J]. Matter and Radiation at Extremes, 2018, 3(4): 165.

References

[1] A.W. Leonard, M.A. Mahdavi, S.L. Allen, N.H. Brooks, M.E. Fenstermacher, et al., Distributed divertor radiation through convection in DIII-D, Phys. Rev. Lett. 78 (1997) 4769.

[2] C. Abromeit, Aspects of simulation of neutron damage by ion irradiation, J. Nucl. Mat. 216 (1994) 78.

[3] A. Kallenbach, J. Adamek, L. Aho-Mantila, S. €Ak€aslompolo, C. Angioni, et al., Overview of ASDEX upgrade results, Nucl. Fusion 51 (2011) 094012.

[4] V.A. Soukhanovskii, R. Maingi, D.A. Gates, J.E. Menard, S.F. Paul, et al., Divertor heat flux mitigation in high-performance H-mode discharges in the National Spherical Torus Experiment, Nucl. Fusion 49 (2009) 095025.

[5] G. Federici, C.H. Skinner, J.N. Brooks, J.P. Coad, C. Grisolia, et al., Plasma-material interactions in current tokamaks and their implications for next step fusion reactors, Nucl. Fusion 41 (2001) 1967.

[6] P.S. Krstic, J.P. Allain, C.N. Taylor, J. Dadras, S. Maeda, et al., Deuterium uptake in magnetic-fusion devices with lithium-conditioned carbon walls, Phys. Rev. Lett. 110 (2013) 105001.

[7] C.N. Taylor, B. Heim, J.P. Allain, Chemical response of lithiated graphite with deuterium irradiation, J. Appl. Phys. 109 (2011) 053306.

[8] S.J. Zinkle, Fusion materials science: overview of challenges and recent progress, Phys. Plasmas 12 (2005) 058101.

[9] C.H. Skinner, R. Sullenberger, B.E. Koel, M.A. Jaworski, H.W. Kugel, Plasma facing surface composition during NSTX Li experiments, J. Nucl. Mat. 438 (2013) S647.

[10] C.H. Skinner, J.P. Allain, W. Blanchard, H.W. Kugel, R. Maingi, et al., Deuterium retention in NSTX with lithium conditioning, J. Nucl. Mater. 415 (2011) S773.

[11] F. Ghezzi, L. Laguardia, R. Caniello, A. Canton, S. Dal Bello, et al., XPS, SIMS and FTIR-ATR characterization of boronized graphite from the thermonuclear plasma device RFX-mod, Appl. Surf. Sci. 354 (2015) 408.

[12] G. Federici, P. Andrew, P. Barabaschi, J. Brooks, R. Doerner, et al., Key ITER plasma edge and plasmaematerial interaction issues, J. Nucl. Mater. 313 (2003) 11-22.

[13] J. Winter, Wall conditioning in fusion devices and its influence on plasma performance, Plasma Phys. Control. Fusion 38 (1996) 1503.

[14] R. Maingi, S.M. Kaye, C.H. Skinner, D.P. Boyle, J.M. Canik, et al., Continuous improvement of H-mode discharge performance with progressively increasing lithium coatings in the National Spherical Torus Experiment, Phys. Rev. Lett. 107 (2011) 145004.

[15] F. Bedoya, J.P. Allain, R. Kaita, C.H. Skinner, B.E. Koel, et al., Initial studies of plasma facing component surface conditioning in the national spherical tokamak experiment upgrade with the materials analysis particle probe, Nucl. Mater. Energy 12 (2017) 1248-1252.

[16] C.H. Skinner, F. Bedoya, F. Scotti, J.P. Allain, W. Blanchard, et al., Advances in boronization on NSTX-Upgrade, Nucl. Mater. Energy 12 (2017) 744-748.

[17] C.N. Taylor, Fundamental Mechanisms of Deuterium Retention in Lithiated Graphite Plasma Facing Surfaces, Doctoral thesis, Purdue University, West Lafayette, IN, USA, 2012.

[18] F. Bedoya, J.P. Allain, R. Kaita, C.H. Skinner, L. Buzi, et al., Unraveling wall conditioning effects on plasma facing components in NSTX-U with the Materials Analysis Particle Probe (MAPP), Rev. Sci. Instrum. 87 (2016) 11D403.

[19] C.N. Taylor, J.P. Allain, B. Heim, P.S. Krstic, C.H. Skinner, et al., Surface chemistry and physics of deuterium retention in lithiated graphite, J. Nucl. Mat. 415 (2011) S777.

[20] C.N. Taylor, J. Dadras, K.E. Luitjohan, J.P. Allain, P.S. Krstic, et al., The role of oxygen in the uptake of deuterium in lithiated graphite, J. Appl. Phys. 114 (2013) 223301.

[21] C. Hollenstein, B.P. Duval, T.D. de Wit, B. Joye, H.J. Ku¨nzli, et al., Cold boronisation in TCA, J. Nucl. Mater. 176 (1990) 343.

[22] O.I. Buzhinskij, Y.M. Semenets, Review of in situ boronization in contemporary tokamaks, Fusion Sci. Technol. 32 (1997) 1-13.

[23] M. Lucia, R. Kaita, R. Majeski, F. Bedoya, J.P. Allain, et al., Dependence of LTX plasma performance on surface conditions as determined by in situ analysis of plasma facing components, J. Nucl. Mater. 463 (2015) 907.

[24] H. Kugel, D. Mansfield, R. Maingi, M.G. Bell, R.E. Bell, et al., Evaporated lithium surface coatings in NSTX, J. Nucl. Mater. 390 (2009) 1000.

[25] H.W. Kugel, M.G. Bell, J.W. Ahn, J.P. Allain, R. Bell, et al., The effect of lithium surface coatings on plasma performance in the National Spherical Torus Experiment, Phys. Plasma 15 (2008) 056118.

[26] R. Maingi, R. Kaita, F. Scotti, V.A. Soukhanovskii, The NSTX team, Elimination of inter-discharge helium glow discharge cleaning with lithium evaporation in NSTX, Nucl. Mater. Energy 12 (2017) 720.

[27] D.L. Rudakov, C.P.C. Wong, A. Litnovsky, W.R. Wampler, J.A. Boedo, et al., Overview of the recent DiMES and MiMES experiments in DIII-D, Phys. Scr. T138 (2009) 14007.

[28] J.P. Allain, A. Shetty, Unraveling atomic-level self-organization at the plasma-material interface, J. Phys. D 50 (2017) 283002.

[29] M. Rubel, S. Brezinsek, J.W. Coenen, A. Huber, A. Kirschner, et al., Overview of wall probes for erosion and deposition studies in the TEXTOR tokamak, Matter Radiat. Extremes 2 (2017) 87.

[30] G.M. Wright, H.A. Barnard, L.A. Kesler, E.E. Peterson, P.W. Stahle, et al., An experiment on the dynamics of ion implantation and sputtering of surfaces, Rev. Sci. Instrum. 85 (2014) 23503.

[31] G.M. Wright, D.G. Whyte, B. Lipschultz, R.P. Doerner, J.G. Kulpin, Dynamics of hydrogenic retention in molybdenum: first results from DIONISOS, J. Nucl. Mater. 363 (2007) 977-983.

[32] S.M. Kaye, T. Abrams, J.-W. Ahn, J.P. Allain, R. Andre, et al., An overview of recent physics results from NSTX, Nucl. Fusion 55 (2015) 104002.

[33] F.J. Domínguez-Guti_errez, F. Bedoya, P.S. Krsti_c, J.P. Allain, S. Irle, et al., Unraveling the plasma-material interface with real time diagnosis of dynamic boron conditioning in extreme tokamak plasmas, Nucl. Fusion 57 (2017) 086050.

[34] L. Pauling, The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms, J. Am. Chem. Soc. 54 (1932) 3570.

[35] S. Brezinsek, A. Widdowson, M. Mayer, V. Philipps, P. Baron-Wiechec, et al., Beryllium migration in JET ITER-like wall plasmas, Nucl. Fusion 55 (2015) 063021.

[36] K. Heinola, J. Likonen, T. Ahlgren, S. Brezinsek, G. De Temmerman, et al., Long-term fuel retention and release in JET ITER-like wall at ITERrelevant baking temperatures, Nucl. Fusion 57 (2017) 086024.

[37] W.J. Mortier, S.K. Ghosh, S. Shankar, Electronegativity-equalization method for the calculation of atomic charges in molecules, J. Am. Chem. Soc. 108 (1986) 4315.

[38] Y. Cong, Z.-Z. Yang, General atom-bond electronegativity equalization method and its application in prediction of charge distributions in polypeptide, Chem. Phys. Lett. 316 (2000) 324.

[39] P.S. Krstic, R.J. Harrison, B. Sumpter, Excited state quantum-classical molecular dynamics, Phys. Scr. T124 (2006) 101.

[40] P.S. Krstic, C.O. Reinhold, S.J. Stuart, Energy and angle spectra of sputtered particles for low-energy deuterium impact of deuterated amorphous carbon, J. Appl. Phys. 104 (2008) 103308.

[41] F.J. Domínguez-Guti_errez, F. Bedoya, P.S. Krsti_c, J.P. Allain, A.L. Neff, et al., Studies of lithiumization and boronization of ATJ graphite PFCs in NSTX-U, Nucl. Mater. Energy 12 (2017) 334.

[42] A.Y.K. Chen, J.W. Davis, A.A. Haasz, Methane formation in graphite and boron-doped graphite under simultaneous Ot and Ht irradiation, J. Nucl. Mat. 290 (2001) 61.

[43] J. Kuppers, The hydrogen surface chemistry of carbon as a plasma facing material, Surf. Sci. Rep. 22 (1995) 249.

[44] P.S. Krstic, C.O. Reinhold, S.J. Stuart, Chemical sputtering from amorphous carbon under bombardment by deuterium atoms and molecules, New J. Phys. 9 (2007) 209.

[45] H. Zang, F.W. Mayer, H.M. Meyer III, M.J. Lance, Surface modification and chemical sputtering of graphite induced by low-energy atomic and molecular deuterium ions, Vacuum 82 (2008) 1285.

[46] B.V. Mech, A.A. Haasz, J.W. Davis, Isotopic effects in hydrocarbon formation due to low-energy H+/D+ impact on graphite, J. Nucl. Mater. 255 (1998) 153.

[47] P. Norajitra, S.I. Abdel-Khalik, L.M. Giancarli, T. Ihli, G. Janeschitz, et al., Divertor conceptual designs for a fusion power plant, Fusion Eng. Des. 83 (2008) 893.

[48] R.A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, et al., Physics basis and design of the ITER plasma-facing components, J. Nucl. Mater. 415 (2011) S957.

[49] M. Balden, J. Roth, New weight-loss measurements of the chemical erosion yields of carbon materials under hydrogen ion bombardment, J. Nucl. Mater. 280 (2000) 39.

[50] E. Salonen, K. Nordlund, J. Keinonen, C.H. Wu, Swift chemical sputtering of amorphous hydrogenated carbon, Phys. Rev. B 63 (2001) 195415.

[51] E.D. de Rooij, U. von Toussaint, A.W. Kleyn, W.J. Goedheer, Molecular dynamics simulations of amorphous hydrogenated carbon under high hydrogen fluxes, Phys. Chem. Chem. Phys. 11 (2009) 9823.

[52] J. Dadras, P.S. Krstic, Chemical sputtering of deuterated carbon surfaces at various surface temperatures, Nucl. Instr. Meth. Phys. Res. B 269 (2011) 1280.

[53] P. Raman, A. Groll, P. Fiflis, D. Curreli, D. Andruczyk, et al., Chemical sputtering studies of lithiated ATJ graphite, J. Nucl. Mater. 438 (2013) S655.

[54] M. Racic, K. Ibano, R. Raju, D.N. Ruzic, Physical erosion studies of plain and lithiated graphite, J. Nucl. Mater. 390 (2009) 1043.

[55] H. Yagi, H. Toyoda, H. Sugai, Dramatic reduction of chemical sputtering of graphite under intercalation of lithium, J. Nucl. Mater. 313 (2003) 284.

[56] P.S. Krstic, J.P. Allain, A. Allouche, J. Jakowskie, J. Dadras, et al., Dynamics of deuterium retention and sputtering of LieCeO surfaces, Fusion Eng. Des. 87 (2012) 1732.

[57] M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, et al., Selfconsistent- charge density-functional tight-binding method for simulations of complex materials properties, Phys. Rev. B 58 (1998) 7260.

[58] G. Zheng, M. Lundberg, J. Jakowski, T. Vreven, M.J. Frisch, et al., Implementation and benchmark tests of the DFTB method and its application in the ONIOM method, Int. J. Quant. Chem. 109 (2009) 1841.

[59] S. Plimton, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys. 117 (1995) 1-19.

[60] A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard III, ReaxFF: a reactive force field for hydrocarbons, J. Phys. Chem. A 105 (2001) 9396.

[61] M.R. Weismiller, A.C.T. van Duin, J. Lee, R.A. Yetter, ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion, J. Phys. Chem. A 114 (2010) 5485.

[62] A. Strachan, A.C.T. van Duin, D. Chakraborty, S. Dasgupta, W.A. Goddard III, Shock waves in high-energy materials: the initial chemical events in nitramine RDX, Phys. Rev. Lett. 91 (2003) 098301.

[63] F.J. Domínguez-Guti_errez, P.S. Krsti_c, Sputtering of lithiated and oxidated carbon surfaces by low-energy deuterium irradiation, J. Nucl. Mater. 492 (2017) 56.

[64] F.J. Domínguez-Guti_errez, P.S. Krsti_c, Chemical sputtering of boronized and oxidized carbon surfaces irradiated by low-energy deuterium atoms, J. Appl. Phys. 212 (2017) 215302.

[65] M. Lucia, R. Kaita, R. Majeski, F. Bedoya, J.P. Allain, et al., Development progress of the materials analysis and particle probe, Sci. Instrum. 85 (2014) 11D835 [66a].

[66] C.N. Taylor, B. Heim, S. Gonderman, J.P. Allain, Z. Yang, et al., Materials analysis and particle probe: a compact diagnostic system for in situ analysis of plasma-facing components (invited), Rev. Sci. Instrum. 83 (2012) 10D703.

[67] M. Baldwin, R. Doerner, R. Causey, S. Luckhardt, R. Conn, Recombination of deuterium atoms on the surface of molten Li-LiD, J. Nucl. Mat. 306 (2002) 15-20.

[68] M. Baldwin, R. Doerner, S. Luckhardt, R. Conn, Deuterium retention in liquid lithium, Nucl. Fusion 42 (2002) 1318.

[69] J. Allain, D. Ruzic, Measurements and modelling of solid phase lithium sputtering, Nucl. Fusion 42 (2002) 202.

[70] W.R. Wampler, C.H. Skinner, H.W. Kugel, A.L. Roquemore, Measurement of lithium and deuterium on NSTX carbon tiles, J. Nucl. Mat. (2009) 1-4.

[71] J.H. Scofield, Theoretical Photoionization Cross Sections from 1 to 1500 KeV, Lawrence Livermore Lab. Rept. UCRL-51326, 1973.

[72] A. Allouche, P. Krstic, The effect of surface oxidation on atomic hydrogen adsorption on lithium-doped graphite surfaces, Carbon 50 (2012) 3882.

[73] A. Allouche, P.S. Krstic, Atomic hydrogen adsorption on lithium-doped graphite surfaces, Carbon 50 (2012) 510.

[74] C.N. Taylor, J.P. Allain, K.E. Luitjohan, P.S. Krstic, J. Dadras, et al., Differentiating the role of lithium and oxygen in retaining deuterium on lithiated graphite plasma-facing components, Phys. Plasma 21 (2014) 057101.

[75] J.P. Allain, C.N. Taylor, Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interface, Phys. Plasma 19 (2012) 056126.

[76] A.L. Neff, J.P. Allain, F. Bedoya, T.W. Morgan, G. De Temmerman, High flux irradiations of Li coatings on polycrystalline W and ATJ graphite with D, He, and He-seeded D plasmas at Magnum PSI, J. Nucl. Mater. 463 (2015) 1147.

[77] J.P. Allain, M.D. Coventry, D.N. Ruzic, Collisional and thermal effects on liquid lithium sputtering, Phys. Rev. B 76 (2007) 205434.

[78] B. Dunweg, W. Paul, Brownian dynamics simulations without Gaussian random numbers, Int. J. Mod. Phys. C 02 (1991) 817.

[79] J.G. Buijnsters, R. Gago, I. Jim_enez, M. Camero, F. Agull_o-Rueda, et al., Hydrogen quantification in hydrogenated amorphous carbon films by infrared, Raman, and X-ray absorption near edge spectroscopies, J. Appl. Phys. 105 (2009) 093510.

[80] B. Heim, C.N. Taylor, D.M. Zigon, S. O'Dell, J.P. Allain, Deuterium ionesurface interactions of liquid-lithium thin films on micro-porous molybdenum substrates, Nucl. Instrum. Methods B 269 (2011) 1262.

[81] A.L. Neff, Dynamic Interactions Between Energetic D and He Ions on Lithium-Tungsten Plasma-Facing Interfaces, Doctoral thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2017.

P.S. Krstic, J.P. Allain, F.J. Dominguez-Gutierrez, F. Bedoya. Unraveling the surface chemistry processes in lithiated and boronized plasma material interfaces under extreme conditions[J]. Matter and Radiation at Extremes, 2018, 3(4): 165.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!