Matter and Radiation at Extremes, 2018, 3 (4): 165, Published Online: Oct. 2, 2018  

Unraveling the surface chemistry processes in lithiated and boronized plasma material interfaces under extreme conditions

Author Affiliations
1 Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY 11794-5250, USA
2 Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, IL 61801, USA
3 Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
Abstract
The review of recent theoretical and experimental research on the complex surface chemistry processes that evolve from low-Z material conditioning on plasma-facing materials under extreme fusion plasma conditions is presented. A combination of multi-scale computational physics and chemistry modeling with real-time diagnosis of the plasma-material interface in tokamak fusion plasma edge is complemented by ex-vessel in-situ single-effect experimental facilities to unravel the evolving characteristics of low-Z components under irradiation. Effects of the lithium and boron coatings at carbon surfaces to the retention of deuterium and chemical sputtering of the plasma-facing surfaces are discussed in detail. The critical role of oxygen in the surface chemistry during hydrogen-fuel irradiation is found to drive the kinetics and dynamics of these surfaces as they interact with fusion edge plasma that ultimately could have profound effects on fusion plasma confinement behavior. Computational studies also extend in spatio-temporal scales not accessible by empirical means and therefore open the opportunity for a strategic approach at irradiation surface science studies that combined these powerful computational tools with in-vessel and ex-vessel in-situ diagnostics.
References

[1] A.W. Leonard, M.A. Mahdavi, S.L. Allen, N.H. Brooks, M.E. Fenstermacher, et al., Distributed divertor radiation through convection in DIII-D, Phys. Rev. Lett. 78 (1997) 4769.

[2] C. Abromeit, Aspects of simulation of neutron damage by ion irradiation, J. Nucl. Mat. 216 (1994) 78.

[3] A. Kallenbach, J. Adamek, L. Aho-Mantila, S. €Ak€aslompolo, C. Angioni, et al., Overview of ASDEX upgrade results, Nucl. Fusion 51 (2011) 094012.

[4] V.A. Soukhanovskii, R. Maingi, D.A. Gates, J.E. Menard, S.F. Paul, et al., Divertor heat flux mitigation in high-performance H-mode discharges in the National Spherical Torus Experiment, Nucl. Fusion 49 (2009) 095025.

[5] G. Federici, C.H. Skinner, J.N. Brooks, J.P. Coad, C. Grisolia, et al., Plasma-material interactions in current tokamaks and their implications for next step fusion reactors, Nucl. Fusion 41 (2001) 1967.

[6] P.S. Krstic, J.P. Allain, C.N. Taylor, J. Dadras, S. Maeda, et al., Deuterium uptake in magnetic-fusion devices with lithium-conditioned carbon walls, Phys. Rev. Lett. 110 (2013) 105001.

[7] C.N. Taylor, B. Heim, J.P. Allain, Chemical response of lithiated graphite with deuterium irradiation, J. Appl. Phys. 109 (2011) 053306.

[8] S.J. Zinkle, Fusion materials science: overview of challenges and recent progress, Phys. Plasmas 12 (2005) 058101.

[9] C.H. Skinner, R. Sullenberger, B.E. Koel, M.A. Jaworski, H.W. Kugel, Plasma facing surface composition during NSTX Li experiments, J. Nucl. Mat. 438 (2013) S647.

[10] C.H. Skinner, J.P. Allain, W. Blanchard, H.W. Kugel, R. Maingi, et al., Deuterium retention in NSTX with lithium conditioning, J. Nucl. Mater. 415 (2011) S773.

[11] F. Ghezzi, L. Laguardia, R. Caniello, A. Canton, S. Dal Bello, et al., XPS, SIMS and FTIR-ATR characterization of boronized graphite from the thermonuclear plasma device RFX-mod, Appl. Surf. Sci. 354 (2015) 408.

[12] G. Federici, P. Andrew, P. Barabaschi, J. Brooks, R. Doerner, et al., Key ITER plasma edge and plasmaematerial interaction issues, J. Nucl. Mater. 313 (2003) 11-22.

[13] J. Winter, Wall conditioning in fusion devices and its influence on plasma performance, Plasma Phys. Control. Fusion 38 (1996) 1503.

[14] R. Maingi, S.M. Kaye, C.H. Skinner, D.P. Boyle, J.M. Canik, et al., Continuous improvement of H-mode discharge performance with progressively increasing lithium coatings in the National Spherical Torus Experiment, Phys. Rev. Lett. 107 (2011) 145004.

[15] F. Bedoya, J.P. Allain, R. Kaita, C.H. Skinner, B.E. Koel, et al., Initial studies of plasma facing component surface conditioning in the national spherical tokamak experiment upgrade with the materials analysis particle probe, Nucl. Mater. Energy 12 (2017) 1248-1252.

[16] C.H. Skinner, F. Bedoya, F. Scotti, J.P. Allain, W. Blanchard, et al., Advances in boronization on NSTX-Upgrade, Nucl. Mater. Energy 12 (2017) 744-748.

[17] C.N. Taylor, Fundamental Mechanisms of Deuterium Retention in Lithiated Graphite Plasma Facing Surfaces, Doctoral thesis, Purdue University, West Lafayette, IN, USA, 2012.

[18] F. Bedoya, J.P. Allain, R. Kaita, C.H. Skinner, L. Buzi, et al., Unraveling wall conditioning effects on plasma facing components in NSTX-U with the Materials Analysis Particle Probe (MAPP), Rev. Sci. Instrum. 87 (2016) 11D403.

[19] C.N. Taylor, J.P. Allain, B. Heim, P.S. Krstic, C.H. Skinner, et al., Surface chemistry and physics of deuterium retention in lithiated graphite, J. Nucl. Mat. 415 (2011) S777.

[20] C.N. Taylor, J. Dadras, K.E. Luitjohan, J.P. Allain, P.S. Krstic, et al., The role of oxygen in the uptake of deuterium in lithiated graphite, J. Appl. Phys. 114 (2013) 223301.

[21] C. Hollenstein, B.P. Duval, T.D. de Wit, B. Joye, H.J. Ku¨nzli, et al., Cold boronisation in TCA, J. Nucl. Mater. 176 (1990) 343.

[22] O.I. Buzhinskij, Y.M. Semenets, Review of in situ boronization in contemporary tokamaks, Fusion Sci. Technol. 32 (1997) 1-13.

[23] M. Lucia, R. Kaita, R. Majeski, F. Bedoya, J.P. Allain, et al., Dependence of LTX plasma performance on surface conditions as determined by in situ analysis of plasma facing components, J. Nucl. Mater. 463 (2015) 907.

[24] H. Kugel, D. Mansfield, R. Maingi, M.G. Bell, R.E. Bell, et al., Evaporated lithium surface coatings in NSTX, J. Nucl. Mater. 390 (2009) 1000.

[25] H.W. Kugel, M.G. Bell, J.W. Ahn, J.P. Allain, R. Bell, et al., The effect of lithium surface coatings on plasma performance in the National Spherical Torus Experiment, Phys. Plasma 15 (2008) 056118.

[26] R. Maingi, R. Kaita, F. Scotti, V.A. Soukhanovskii, The NSTX team, Elimination of inter-discharge helium glow discharge cleaning with lithium evaporation in NSTX, Nucl. Mater. Energy 12 (2017) 720.

[27] D.L. Rudakov, C.P.C. Wong, A. Litnovsky, W.R. Wampler, J.A. Boedo, et al., Overview of the recent DiMES and MiMES experiments in DIII-D, Phys. Scr. T138 (2009) 14007.

[28] J.P. Allain, A. Shetty, Unraveling atomic-level self-organization at the plasma-material interface, J. Phys. D 50 (2017) 283002.

[29] M. Rubel, S. Brezinsek, J.W. Coenen, A. Huber, A. Kirschner, et al., Overview of wall probes for erosion and deposition studies in the TEXTOR tokamak, Matter Radiat. Extremes 2 (2017) 87.

[30] G.M. Wright, H.A. Barnard, L.A. Kesler, E.E. Peterson, P.W. Stahle, et al., An experiment on the dynamics of ion implantation and sputtering of surfaces, Rev. Sci. Instrum. 85 (2014) 23503.

[31] G.M. Wright, D.G. Whyte, B. Lipschultz, R.P. Doerner, J.G. Kulpin, Dynamics of hydrogenic retention in molybdenum: first results from DIONISOS, J. Nucl. Mater. 363 (2007) 977-983.

[32] S.M. Kaye, T. Abrams, J.-W. Ahn, J.P. Allain, R. Andre, et al., An overview of recent physics results from NSTX, Nucl. Fusion 55 (2015) 104002.

[33] F.J. Domínguez-Guti_errez, F. Bedoya, P.S. Krsti_c, J.P. Allain, S. Irle, et al., Unraveling the plasma-material interface with real time diagnosis of dynamic boron conditioning in extreme tokamak plasmas, Nucl. Fusion 57 (2017) 086050.

[34] L. Pauling, The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms, J. Am. Chem. Soc. 54 (1932) 3570.

[35] S. Brezinsek, A. Widdowson, M. Mayer, V. Philipps, P. Baron-Wiechec, et al., Beryllium migration in JET ITER-like wall plasmas, Nucl. Fusion 55 (2015) 063021.

[36] K. Heinola, J. Likonen, T. Ahlgren, S. Brezinsek, G. De Temmerman, et al., Long-term fuel retention and release in JET ITER-like wall at ITERrelevant baking temperatures, Nucl. Fusion 57 (2017) 086024.

[37] W.J. Mortier, S.K. Ghosh, S. Shankar, Electronegativity-equalization method for the calculation of atomic charges in molecules, J. Am. Chem. Soc. 108 (1986) 4315.

[38] Y. Cong, Z.-Z. Yang, General atom-bond electronegativity equalization method and its application in prediction of charge distributions in polypeptide, Chem. Phys. Lett. 316 (2000) 324.

[39] P.S. Krstic, R.J. Harrison, B. Sumpter, Excited state quantum-classical molecular dynamics, Phys. Scr. T124 (2006) 101.

[40] P.S. Krstic, C.O. Reinhold, S.J. Stuart, Energy and angle spectra of sputtered particles for low-energy deuterium impact of deuterated amorphous carbon, J. Appl. Phys. 104 (2008) 103308.

[41] F.J. Domínguez-Guti_errez, F. Bedoya, P.S. Krsti_c, J.P. Allain, A.L. Neff, et al., Studies of lithiumization and boronization of ATJ graphite PFCs in NSTX-U, Nucl. Mater. Energy 12 (2017) 334.

[42] A.Y.K. Chen, J.W. Davis, A.A. Haasz, Methane formation in graphite and boron-doped graphite under simultaneous Ot and Ht irradiation, J. Nucl. Mat. 290 (2001) 61.

[43] J. Kuppers, The hydrogen surface chemistry of carbon as a plasma facing material, Surf. Sci. Rep. 22 (1995) 249.

[44] P.S. Krstic, C.O. Reinhold, S.J. Stuart, Chemical sputtering from amorphous carbon under bombardment by deuterium atoms and molecules, New J. Phys. 9 (2007) 209.

[45] H. Zang, F.W. Mayer, H.M. Meyer III, M.J. Lance, Surface modification and chemical sputtering of graphite induced by low-energy atomic and molecular deuterium ions, Vacuum 82 (2008) 1285.

[46] B.V. Mech, A.A. Haasz, J.W. Davis, Isotopic effects in hydrocarbon formation due to low-energy H+/D+ impact on graphite, J. Nucl. Mater. 255 (1998) 153.

[47] P. Norajitra, S.I. Abdel-Khalik, L.M. Giancarli, T. Ihli, G. Janeschitz, et al., Divertor conceptual designs for a fusion power plant, Fusion Eng. Des. 83 (2008) 893.

[48] R.A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, et al., Physics basis and design of the ITER plasma-facing components, J. Nucl. Mater. 415 (2011) S957.

[49] M. Balden, J. Roth, New weight-loss measurements of the chemical erosion yields of carbon materials under hydrogen ion bombardment, J. Nucl. Mater. 280 (2000) 39.

[50] E. Salonen, K. Nordlund, J. Keinonen, C.H. Wu, Swift chemical sputtering of amorphous hydrogenated carbon, Phys. Rev. B 63 (2001) 195415.

[51] E.D. de Rooij, U. von Toussaint, A.W. Kleyn, W.J. Goedheer, Molecular dynamics simulations of amorphous hydrogenated carbon under high hydrogen fluxes, Phys. Chem. Chem. Phys. 11 (2009) 9823.

[52] J. Dadras, P.S. Krstic, Chemical sputtering of deuterated carbon surfaces at various surface temperatures, Nucl. Instr. Meth. Phys. Res. B 269 (2011) 1280.

[53] P. Raman, A. Groll, P. Fiflis, D. Curreli, D. Andruczyk, et al., Chemical sputtering studies of lithiated ATJ graphite, J. Nucl. Mater. 438 (2013) S655.

[54] M. Racic, K. Ibano, R. Raju, D.N. Ruzic, Physical erosion studies of plain and lithiated graphite, J. Nucl. Mater. 390 (2009) 1043.

[55] H. Yagi, H. Toyoda, H. Sugai, Dramatic reduction of chemical sputtering of graphite under intercalation of lithium, J. Nucl. Mater. 313 (2003) 284.

[56] P.S. Krstic, J.P. Allain, A. Allouche, J. Jakowskie, J. Dadras, et al., Dynamics of deuterium retention and sputtering of LieCeO surfaces, Fusion Eng. Des. 87 (2012) 1732.

[57] M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, et al., Selfconsistent- charge density-functional tight-binding method for simulations of complex materials properties, Phys. Rev. B 58 (1998) 7260.

[58] G. Zheng, M. Lundberg, J. Jakowski, T. Vreven, M.J. Frisch, et al., Implementation and benchmark tests of the DFTB method and its application in the ONIOM method, Int. J. Quant. Chem. 109 (2009) 1841.

[59] S. Plimton, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys. 117 (1995) 1-19.

[60] A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard III, ReaxFF: a reactive force field for hydrocarbons, J. Phys. Chem. A 105 (2001) 9396.

[61] M.R. Weismiller, A.C.T. van Duin, J. Lee, R.A. Yetter, ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion, J. Phys. Chem. A 114 (2010) 5485.

[62] A. Strachan, A.C.T. van Duin, D. Chakraborty, S. Dasgupta, W.A. Goddard III, Shock waves in high-energy materials: the initial chemical events in nitramine RDX, Phys. Rev. Lett. 91 (2003) 098301.

[63] F.J. Domínguez-Guti_errez, P.S. Krsti_c, Sputtering of lithiated and oxidated carbon surfaces by low-energy deuterium irradiation, J. Nucl. Mater. 492 (2017) 56.

[64] F.J. Domínguez-Guti_errez, P.S. Krsti_c, Chemical sputtering of boronized and oxidized carbon surfaces irradiated by low-energy deuterium atoms, J. Appl. Phys. 212 (2017) 215302.

[65] M. Lucia, R. Kaita, R. Majeski, F. Bedoya, J.P. Allain, et al., Development progress of the materials analysis and particle probe, Sci. Instrum. 85 (2014) 11D835 [66a].

[66] C.N. Taylor, B. Heim, S. Gonderman, J.P. Allain, Z. Yang, et al., Materials analysis and particle probe: a compact diagnostic system for in situ analysis of plasma-facing components (invited), Rev. Sci. Instrum. 83 (2012) 10D703.

[67] M. Baldwin, R. Doerner, R. Causey, S. Luckhardt, R. Conn, Recombination of deuterium atoms on the surface of molten Li-LiD, J. Nucl. Mat. 306 (2002) 15-20.

[68] M. Baldwin, R. Doerner, S. Luckhardt, R. Conn, Deuterium retention in liquid lithium, Nucl. Fusion 42 (2002) 1318.

[69] J. Allain, D. Ruzic, Measurements and modelling of solid phase lithium sputtering, Nucl. Fusion 42 (2002) 202.

[70] W.R. Wampler, C.H. Skinner, H.W. Kugel, A.L. Roquemore, Measurement of lithium and deuterium on NSTX carbon tiles, J. Nucl. Mat. (2009) 1-4.

[71] J.H. Scofield, Theoretical Photoionization Cross Sections from 1 to 1500 KeV, Lawrence Livermore Lab. Rept. UCRL-51326, 1973.

[72] A. Allouche, P. Krstic, The effect of surface oxidation on atomic hydrogen adsorption on lithium-doped graphite surfaces, Carbon 50 (2012) 3882.

[73] A. Allouche, P.S. Krstic, Atomic hydrogen adsorption on lithium-doped graphite surfaces, Carbon 50 (2012) 510.

[74] C.N. Taylor, J.P. Allain, K.E. Luitjohan, P.S. Krstic, J. Dadras, et al., Differentiating the role of lithium and oxygen in retaining deuterium on lithiated graphite plasma-facing components, Phys. Plasma 21 (2014) 057101.

[75] J.P. Allain, C.N. Taylor, Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interface, Phys. Plasma 19 (2012) 056126.

[76] A.L. Neff, J.P. Allain, F. Bedoya, T.W. Morgan, G. De Temmerman, High flux irradiations of Li coatings on polycrystalline W and ATJ graphite with D, He, and He-seeded D plasmas at Magnum PSI, J. Nucl. Mater. 463 (2015) 1147.

[77] J.P. Allain, M.D. Coventry, D.N. Ruzic, Collisional and thermal effects on liquid lithium sputtering, Phys. Rev. B 76 (2007) 205434.

[78] B. Dunweg, W. Paul, Brownian dynamics simulations without Gaussian random numbers, Int. J. Mod. Phys. C 02 (1991) 817.

[79] J.G. Buijnsters, R. Gago, I. Jim_enez, M. Camero, F. Agull_o-Rueda, et al., Hydrogen quantification in hydrogenated amorphous carbon films by infrared, Raman, and X-ray absorption near edge spectroscopies, J. Appl. Phys. 105 (2009) 093510.

[80] B. Heim, C.N. Taylor, D.M. Zigon, S. O'Dell, J.P. Allain, Deuterium ionesurface interactions of liquid-lithium thin films on micro-porous molybdenum substrates, Nucl. Instrum. Methods B 269 (2011) 1262.

[81] A.L. Neff, Dynamic Interactions Between Energetic D and He Ions on Lithium-Tungsten Plasma-Facing Interfaces, Doctoral thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2017.

P.S. Krstic, J.P. Allain, F.J. Dominguez-Gutierrez, F. Bedoya. Unraveling the surface chemistry processes in lithiated and boronized plasma material interfaces under extreme conditions[J]. Matter and Radiation at Extremes, 2018, 3(4): 165.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!