发光学报, 2017, 38 (8): 1028, 网络出版: 2017-08-30   

ZnS∶Cu-罗丹明B的荧光共振能量转移性质

Properties of Fluorescence Resonance Energy Transfer of ZnS∶Cu-Rhodamine B
作者单位
1 长春理工大学 理学院, 吉林 长春130022
2 长春理工大学 国际教育与交流学院, 吉林 长春130022
摘要
为了解决现有的基于量子点荧光共振能量转移体系的生物毒性问题, 选用无毒的ZnS∶Cu量子点与罗丹明B构建新型荧光共振能量转移体系。通过共沉淀法成功制备了形貌均一的ZnS∶Cu纳米晶量子点。在此基础上, 测试了不同掺杂浓度的ZnS∶Cu量子点及罗丹明B的荧光光谱。然后, 通过对ZnS∶Cu量子点的表面修饰构建了以ZnS∶Cu量子点为供体、罗丹明B为受体的荧光共振能量转移体系。实验结果表明: ZnS∶2%Cu量子点的发光光谱与罗丹明B的吸收光谱在481 nm处有较大重合, 说明构建荧光共振能量转移的最佳铜掺杂摩尔分数为2%。通过计算发现以ZnS∶2%Cu量子点为供体、罗丹明B为受体的荧光共振能量转移体系的能量转移效率为25.8%。进一步实验结果表明, 罗丹明B浓度也能够影响能量转移。
Abstract
In order to solve the biological toxicity of fluorescence resonance energy transfer (FRET) system based on quantum dots, non-toxic ZnS∶Cu quantum dots and Rhodamine B were chosen to construct FRET system. ZnS∶Cu nanocrystalline quantum dots with good morphology were successfully prepared by precipitation method. On this basis, the fluorescence spectra of ZnS∶Cu quantum dots with different concentration of copper and fluorescence spectra of Rhodamine B were tested. Then, FRET system with ZnS∶Cu quantum dots as donor and Rhodamine B as acceptor was successfully constructed by the surface modification. Experimental results indicate that the emission spectrum of ZnS∶2%Cu matches the excitation spectrum of Rhodamine B most in 481 nm. So the optimum copper doping mole fraction for the construction of FRET system is 2%. The energy transfer efficiency of ZnS∶Cu quantum dots as donor and Rhodamine B as acceptor is 25.8%. Further experimental results indicate that the concentration of Rhodamine B also can affect the energy transfer.
参考文献

[1] FRSTER T. Zwischenmolekulare energiewanderung und fluoreszenz [J]. Ann. Phys., 1948, 437(1-2):55-75.

[2] VANOAICA L, BEHERA A, CAMARGO S M R, et al.. Real-time functional characterization of cationic amino acid transporters using a new FRET sensor [J]. Pflügers Arch., 2016, 468(4):563-572.

[3] WANG Y, LIU K, LIU X M, et al.. Critical shell thickness of core/shell upconversion luminescence nanoplastform for FRET application [J]. J. Phys. Chem. Lett., 2011, 2(17):2083-2088.

[4] COST A L, RINGER P, CHROSTEK-GRASHOFF A, et al.. How to measure molecular forces in cells: a guide to evaluating genetically-encoded FRET-based tension sensors [J]. Cell. Mol. Bioeng., 2015, 8(1):96-105.

[5] VAN DER KROGT G N M, OGINK J, PONSIOEN B, et al.. A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example [J]. PLoS One, 2008, 3(4):e1916.

[6] KEDZIORA K M, JALINK K. Fluorescence Resonance Energy Transfer Microscopy (FRET) [M]. VERVEER P J. Advanced Fluorescence Microscopy: Methods and Protocols. New York: Springer, 2015:67-82.

[7] KERSHAW S V, SUSHA A S, ROGACH A L. Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties [J]. Chem. Soc. Rev., 2013, 42(7):3033-3087.

[8] MATTSSON L, WEGNER K D, HILDEBRANDT N, et al.. Upconverting nanoparticle to quantum dot FRET for homogeneous double-nano biosensors [J]. RSC Adv., 2015, 5(18):13270-13277.

[9] DENNIS A M, RHEE W J, SOTTO D, et al.. Quantum dot-fluorescent protein FRET probes for sensing intracellular pH [J]. ACS Nano, 2012, 6(4):2917-2924.

[10] LI L, LIU J B, YANG X H, et al.. Quantum dot/methylene blue FRET mediated NIR fluorescent nanomicelles with large Stokes shift for bioimaging [J]. Chem. Commun., 2015, 51(76):14357-14360.

[11] DOS SANTOS M C, HILDEBRANDT N. Recent developments in lanthanide-to-quantum dot FRET using time-gated fluorescence detection and photon upconversion [J]. TrAC Trends Anal. Chem., 2016, 86:60-71.

[12] ALIVISATOS A P, GU W W, LARABELL C. Quantum dots as cellular probes [J]. Annu. Rev. Biomed. Eng., 2005, 7:55-76.

[13] LEI Y, XIAO Q, HUANG S, et al.. Impact of CdSe/ZnS quantum dots on the development of zebrafish embryos [J]. J. Nanopart. Res., 2011, 13(12):6895-6906.

[14] LI J L, ZHANG Y H, AI J J, et al.. Quantum dot cluster (QDC)-loaded phospholipid micelles as a FRET probe for phospholipase A2 detection [J]. RSC Adv., 2016, 6(19):15895-15899.

[15] WANG S Z, ZHANG J G, CHEN H G, et al.. An optical FRET inhibition sensor for serum ferritin based on Mn2+-doped NaYF4∶Yb, Tm NIR luminescence up-conversion nanoparticles [J]. J. Lumin., 2015, 168:82-87.

[16] 高桂园, 刘璐, 付璇, 等. CdTe量子点-罗丹明B荧光共振能量转移法测定溶菌酶 [J]. 发光学报, 2012, 33(8):911-915.

    GAO G Y, LIU L, FU X, et al.. Fluorescence resonance energy transfer between CdTe QDs and rhodamine B with its application in the determination of lysozyme [J]. Chin. J. Lumin., 2012, 33(8):911-915. (in Chinese)

[17] HABEEBU S S M, LIU J, KLAASSEN C D. Cadmium-induced apoptosis in mouse liver [J]. Toxicol. Appl. Pharmacol., 1998, 149(2):203-209.

[18] GESZKE-MORITZ M, PIOTROWSKA H, MURIAS M, et al.. Thioglycerol-capped Mn-doped ZnS quantum dot bioconjugates as efficient two-photon fluorescent nano-probes for bioimaging [J]. J. Mater. Chem. B, 2013, 1(5):698-706.

[19] DAS U. Development of ZnS nanostructure based luminescent devices [J]. Imperial J. Interdiscip. Res., 2016, 2(6): 627-630.

翟英歌, 楚学影, 徐铭泽, 李金华, 金芳军, 王晓华. ZnS∶Cu-罗丹明B的荧光共振能量转移性质[J]. 发光学报, 2017, 38(8): 1028. ZHAI Ying-ge, CHU Xue-ying, XU Ming-ze, LI Jin-hua, JIN Fang-jun, WANG Xiao-hua. Properties of Fluorescence Resonance Energy Transfer of ZnS∶Cu-Rhodamine B[J]. Chinese Journal of Luminescence, 2017, 38(8): 1028.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!