中国激光, 2016, 43 (3): 0305006, 网络出版: 2016-03-04   

采用级联方式在230 km 光纤链路中同时实现频率传递和时间同步

Simultaneous Frequency Transfer and Time Synchronization over a Cascaded Fiber Link of 230 km
作者单位
1 中国科学院上海光学精密机械研究所中科院量子光学重点实验室, 上海 201800
2 中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
摘要
The joint transfer of frequency and one pulse-per-second time signals based on dense wavelength division multiplexing technology is demonstrated over a compensated cascaded fiber link of 230 km, consisting of two stages of fiber links with lengths of 150 km and 80 km . A bi-directional erbium-doped fiber amplifier is inserted in the center of 150 km fiber link to compensate for significant optical attenuation. After every stage has achieved the steady state by optical compensation, the Allan deviation of frequency signal of the cascaded system is 3.1×10-14 at 1 s and 6.3 × 10-18 at 104 s respectively; the time deviation of time signal is less than 3.5 ps at an averaging time of 102 s to 104 s. Further, it is verified that the stability of the cascaded link is the standard deviation of the stabilities of the two stages links for both frequency and time signals. After calibration, time synchronization is also realized and the accuracy is within 90 ps.
Abstract
基于波分复用技术,通过级联方式在230 km 光纤链路中实现了频率和时间的同传。该级联系统包含了150 km 和80 km 两级链路系统,其中为了补偿150 km 光纤链路中的损耗,在链路中间放置了一个双向掺铒光纤放大器。当每一级传递系统通过光学补偿方式达到稳定后,整个级联系统的频率稳定度为3.1×10-14(平均时间1 s时)和6.3×10-18(平均时间104 s时),时间稳定度为3.5 ps(平均时间102~104 s时)。实验结果也证明,不管是对频率信号还是时间信号,都满足误差理论,整个系统的稳定度几乎等于两级链路稳定度的标准偏差。同时通过两级系统的校准,最后得到整个级联系统的时间同步准确度为90 ps。
参考文献

[1] R Li, K Gibble, K Szymaniec. Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts[J]. Metrologia, 2011, 48(5): 283-289.

[2] S Weyers, V Gerginov, N Nemitz, et al.. Distributed cavity phase frequency shifts of the caesium fountain PTB-CsF2[J]. Metrologia, 2012, 49(1): 82-87.

[3] I Ushijima, M Takamoto, M Das, et al.. Cryogenic optical lattice clocks[J]. Nat Photonics, 2015, 9(3): 85-189.

[4] B J Bloom, T l Nicholson, J R Williams, et al.. An optical lattice clock with accuracy and stability at the 10-18 level[J]. Nature, 2014, 506 (6): 71-75.

[5] D Piester, A Bauch, L Breakiron, et al.. Time transfer with nanosecond accuracy for the realization of international atomic time[J]. Metrologia, 2008, 45(2): 185-198.

[6] W Tseng, S Lin, K Feng, et al.. Improving TWSTFT short-term stability by network time transfer[J]. IEEE Trans Ultrason, Ferroelectr, Freq Control, 2010, 57(1): 161-167.

[7] O Lopez, A Amy-Klein, C Daussy, et al.. 86-km optical link with a resolution of 2×10-18 for RF frequency transfer[J]. Eur Phys J D, 2008, 48(1): 35-41.

[8] O Lopez, A Haboucha, B Chanteau, et al.. Ultra-stable long distance optical frequency distribution using the Internet fiber network[J]. Opt Express, 2012, 20(21): 23518-23526.

[9] S Droste, F Ozimek, T Udem, et al.. Optical-frequency transfer over a single-span 1840 km fiber link[J]. Phys Rev Lett, 2013, 111(11): 110801-1-110801-5.

[10] M Amemiya, M Imae, Y Fujii, et al.. Precise frequency comparison system using bidirectional optical amplifiers[J]. IEEE Trans Instrum Meas, 2010, 59(3): 632-640.

[11] ′Sliwczy′nski, P Krehlik, Buczek, et al.. Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers[J]. IEEE Trans Instrum Meas, 2012, 61(9): 2573-2580.

[12] M Fujieda, M Kumagai, and S Nagano. Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system[J]. IEEE Trans Ultrason, Ferroelect, Freq Contr, 2010, 57(1): 168-174.

[13] O Lopez, A Haboucha, F Kefelian, et al.. Cascaded multiplexed optical link on a telecommunication network for frequency dissemination [J]. Opt Express, 2010, 18(16): 16849-16857.

[14] D S Robertson. Geophysical applications of very-long-baseline interferometry[J]. Rev Mod Phys, 1991, 63(4): 899-918.

[15] M Calhoun, S Huang, and R L Tijoelker. Stable photonic link for frequency and time transfer in the deep-space network and antenna arrays[C]. Proc IEEE, 2007, 95(10): 1931-1946.

[16] 程楠, 陈炜, 刘琴, 等. 应用于秒脉冲传递的电光调制器反馈控制系统[J]. 中国激光, 2015, 42(9): 0905002.

    Cheng Nan, Chen Wei, Liu Qin, et al.. Bias point control system of electro-optic modulator used for transferring one pulse per second [J]. Chinese J Lasers, 2015, 42(9): 0905002.

[17] S M Foreman, K W Holman, D D Hudson, et al.. Remote transfer of ultrastable frequency references via fiber networks[J]. Rev Sci Instrum, 2007, 78(2): 021101-1–021101-25.

[18] P Krehlik, S′ liwczyński , ukaszbuczek, et al.. Fiber-optic joint time and frequency transfer with active stabilization of the propagation delay[J]. IEEE T Instrum Meas, 2012, 61(10): 2844-2851.

[19] 程楠, 陈炜, 刘琴, 等. 光纤时间频率同时传递系统中时间同步方法的研究[J]. 中国激光, 2015, 42(7): 0705002.

    Cheng Nan, Chen Wei, Liu Qin,et al.. Time synchronization technique for joint time and frequency transfer via optical fiber[J]. Chinese J Lasers, 2015, 42(7): 0705002.

[20] Wei Chen, Qin Liu, Nan Cheng, et al.. Joint time and frequency dissemination network over delay-stabilized fiber optic links[J]. Photonics J, 2015, 7(3): 7901609.

[21] Qin Liu, Wei Chen, Dan Xu, et al.. Bi-directional erbium-doped fiber amplifiers used in joint frequency and time transfer based on WDM technology[J]. Chin Opt Lett, 2015, 13(11) : 110601.

[22] Y T Fei. Error Theory and Data Processing[M].5th ed, Beijing: Machinery Industry Press, 2004: 176-177.

刘琴, 陈炜, 徐丹, 程楠, 杨飞, 桂有珍, 蔡海文, 韩申生. 采用级联方式在230 km 光纤链路中同时实现频率传递和时间同步[J]. 中国激光, 2016, 43(3): 0305006. Liu Qin, Chen Wei, Xu Dan, Cheng Nan, Yang Fei, Gui Youzhen, Cai Haiwen, Han Shensheng. Simultaneous Frequency Transfer and Time Synchronization over a Cascaded Fiber Link of 230 km[J]. Chinese Journal of Lasers, 2016, 43(3): 0305006.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!