光子学报, 2017, 46 (5): 0532001, 网络出版: 2017-06-30  

少周期飞秒准径向偏振光的超快瞬变聚焦矢量场

Ultrafast Transient Focal Vector Field of Few-cycle Femtosecond Quasi Radially Polarized Beams
作者单位
1 国防科学技术大学 理学院, 长沙 410073
2 95975部队, 甘肃 酒泉 732750
3 中国卫星海洋测控中心, 江苏 江阴 214431
4 国防科学技术大学 电子科学与工程学院, 长沙 410073
摘要
研究了基于腔外螺旋相位调制获取高峰值功率飞秒准径向偏振光的方法, 结果表明该方法所产生的并非完全纯净的径向偏振光, 其径向分量决定了聚焦后纵场的分布, 而径向和角向分量共同影响了横场的分布.根据Richard-Wolf矢量衍射理论模拟得到不同纯度下的少周期飞秒准径向偏振光在焦点附近的电场的时空矢量分布, 发现其具有中心对称和震荡衰减特点, 载波包络相位将对聚焦场的矢量时空分布产生显著影响, 从而对飞秒脉冲与电子在聚焦场中的相互作用产生影响.研究结果可为进一步的激光粒子加速分析以及偏振转换器的设计提供依据.
Abstract
The extra-cavity quasi-continue spiral phase modulation method for generating high peak power quasi- radially polarized beam was studied, which show that the generated beam is not perfect radially polarized, the radially polarized components determine the longitudinal electric field distribution, and the transversal field distribution is determined by both of the radially and the azimuthally polarized components. Considering the Richard-Wolf vector diffraction theory, the spatial and temporal distribution of the electric field vectors around the focal spot for various purities were simulated. The results show that the spatial and temporal distribution possesses the features of centrosymmetry and oscillation attenuation, and will be remarkably affected by the carrier envelope phase. Furthermore, the analysis indicates that the interactions between the focused pulse and the electron will be significantly determined by the spatial and temporalvector distribution at the focal spot. The results will provide valuable basis for the laser-particler interaction analysis and further polarization convertor designs.
参考文献

[1] PAYEUR S, FOURMAUX S, SCHMIDT B E, et al. Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse[J]. Applied Physics Letters, 2012, 101(4): 041105.

[2] MARCEAU V, APRIL A, PICHE M. Electron acceleration driven by ultrashort and non-paraxial radially polarized laser pulses[J].Optics Letters, 2012, 37(13): 2442-4.

[3] CHEN Gui-yang, SONG Feng, WANG Hua-tian. Sharper focal spot generated by 4π tight focusing of higher-order Laguerre-Gaussian radially polarized beam[J]. Optics Letters, 2013, 38(19): 3937-3940.

[4] HALBAA E M, BOUSTITIB M, EZ-ZARIYA L, et al. Focusing properties of radially polarized modified Bessel-modulated Gaussian beam by a high numerical aperture objective[J]. Optics & Laser Technology, 2016, 88: 40-53.

[5] JANET C A P, RAJESH K B, UDHAYAKUMAR M, et al. Tight focusing properties of radially polarized gaussian beams with pair of vortices[J]. Chinese Physics Letters, 2016, 33(12): 124206.

[6] LIN Jie, CHEN Ran, YU Hai-chao, et al. Generation of hollow beam with radially polarized vortex beam and complex amplitude filter[J]. Journal of the Optical Society of America, 2014, 31(7): 1395-1400.

[7] GU Bing, PAN Yang, WU Jia-lu, et al. Tight focusing properties of spatial-variant linearly-polarized vector beams[J].Journal of Optics, 2014, 43(1): 18-27.

[8] KONAWA Y, SATO S. Focusing of higher-order radially polarized Laguerre-Gaussian beam[J].Journal of the Optical Society of America A, 2012, 29(11): 2439-43.

[9] YANG Liang-xin, XIE Xiang-sheng, WANG Si-cong, et al. Minimized spot of annular radially polarized focusing beam[J]. Optics Letters, 2013, 38(8): 1331-1333.

[10] CHEN Zi-yang, ZHAO Dao-mu. 4Pi focusing of spatially modulated radially polarized vortex beams[J]. Optics Letters, 2012, 37(8): 1286-8.

[11] PRABAKARAN K, RAJESH K B, PILLAI T V S, et al. Generation of multiple focal spot using phase modulated radially polarized TEM11* mode beam[J]. Journal of Optics, 2015, 44(4): 311-316.

[12] ZHANG Fei, YU Hong-lin, FANG Jia-wen, et al. Efficient generation and tight focusing of radially polarized beam from linearly polarized beam with all-dielectric metasurface[J].Optics Express, 2016, 24(4): 6656-6664.

[13] ZHU Shi-jun, WANG Jing, LIU Xian-long, et al. Generation of arbitrary radially polarized array beams by manipulating correlation structure[J].Applied Physics Letters, 2016, 109(16): 161904.

[14] AGHBOLAGHI R, CHAREHJOLO H S. Radially and azimuthally polarized laser beams by thin-disk laser[J].Applied Optics, 2016, 55(13): 3510-3517.

[15] WAKAYAMA T, RODRIGUEZ-HERRERA O G, TYO J S, et al. Generation of achromatic, uniform-phase, radially polarized beams[J].Optics Express, 2014, 22(3): 3306-3315.

[16] MOSHE I, JACKEL S, LUMER Y, et al. Use of polycrystalline Nd∶YAG rods to achieve pure radially or azimuthally polarized beams from high-average-power lasers[J].Optics Letters, 2010, 35(15): 2511-2513.

[17] XIE Xiang-sheng, SUN Hua-yang, YANG Liang-xin, et al. Effect of polarization purity of cylindrical vector beam on tightly focused spot[J].Journal of the Optical Society of America A, 2013, 30(10): 1937-40.

[18] QI Jun-li. External cavity generation and analysis of radially polarized femtosecond laser pulses[D]. Hefei: National University of Defense Technology, 2012:39-42.

[19] KHONINA S N, DEGTYAREV S A. A longitudinally polarized beam generated by a binary axicon[J].Journal of Russian Laser Research, 2015, 36(2): 151-161.

[20] HU Wen-hua. Study of key issues in super-resolution near-field structure optical storage[D]. Hefei: National University of Defense Technology, 2011: 25-27.

张远达, 李修建, 贾辉, 聂永明, 刘希顺. 少周期飞秒准径向偏振光的超快瞬变聚焦矢量场[J]. 光子学报, 2017, 46(5): 0532001. ZHANG Yuan-da, LI Xiu-jian, JIA Hui, NIE Yong-ming, LIU Xi-shun. Ultrafast Transient Focal Vector Field of Few-cycle Femtosecond Quasi Radially Polarized Beams[J]. ACTA PHOTONICA SINICA, 2017, 46(5): 0532001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!