Photonic Sensors, 2016, 6 (2): 132, Published Online: Oct. 20, 2016   

Time Division Multiplexing of 106 Weak Fiber Bragg Gratings Using a Ring Cavity Configuration

Author Affiliations
1 National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, Wuhan, 430070, China
2 Key Laboratory of Ministry of Education for Fiber Optic Sensing Technology and Information Processing, Wuhan University of Technology, 430070, China
Abstract
A time division multiplexing of 106 weak fibers Bragg gratings (FBGs) based on a ring resonant-cavity is demonstrated. A semiconductor optical amplifier is connected in the cavity to function as an amplifier as well as a switch. The 106 weak FBGs are written along a SMF-28 fiber in serial with peak reflectivity of about -30 dB and equal separations of 5 m. The crosstalk and spectral distortion are investigated through both theoretical analysis and experiments.
References

[1] W. Jin, “Multiplexed FBG sensors and their applications,” in Proc. SPIE, 1999, vol. 3897, pp. 468-479.

[2] C. Rodrigues, C. Félix, A. Lage, and J. Figueiras, “Development of a long-term monitoring system based on FBG sensors applied to concrete bridges,” Engineering Structures, 2010, 32(8): 1993-2002.

[3] M. Mieloszyk, L. Skarbek, M. Krawczuk, W. Ostachowicz, and A. Zak, “Application of fiber Bragg grating sensors for structural health monitoring of an adaptive wing,” Smart Material & Structures, 2011, 20(12): 11516-11543.

[4] K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sensors & Actuators A, 2000, 82(s1-3): 40-61.

[5] G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation,” Optics Express, 2005, 13(7): 2377-2384.

[6] G. D. Lloyd, L. A. Everall, K. Sugden, and I. Bennion, “Novel resonant cavity TDM demodulation scheme for FBG sensing,” in Conference on Lasers and Electro-Optics, San Francisco, CA, 2004.

[7] G. D. Lloyd, L. A. Everall, K. Sugden, and I. Bennion, “Resonant cavity time-division-multiplexed fiber Bragg grating sensor interrogator,” IEEE Photonics Technology Letters, 2004, 16(10): 2323-2325.

[8] W. H. Chung and H. Y. Tam, “Time- and wavelength-division multiplexing of FBG sensors using a semiconductor optical amplifier in ring cavity configuration,” IEEE Photonics Technology Letters, 2005, 17(12): 2709-2711.

[9] Y. B. Dai, Y. J. Liu, J. S. Leng, G. Deng, and A. Asundi, “A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Optics & Lasers in Engineering, 2009, 47(10): 1028-1033.

[10] C. C. Chan, W. Jin, D, J, Wang, and M. S. Demokan, “Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser,” Microwave and Optical Technology Letters, 2000, 36(1): 2-4.

[11] D. J. F. Cooper, T. Coroy, and P. W. E. Smith, “Time-division multiplexing of large serial fiberoptic Bragg grating sensor arrays,” Applied Optics, 2001, 40(16): 2643-2654.

[12] H. Y. Guo, J, G. Tang, X. F. Li, Y. Zheng, and H. F. Yu, “On-line writing identical and weak fiber Bragg grating arrays,” Chinese Optics Letters, 2013, 11(3): 4-7.

Zhi WANG, Hongqiao WEN, Zhihui LUO, Yutang DAI. Time Division Multiplexing of 106 Weak Fiber Bragg Gratings Using a Ring Cavity Configuration[J]. Photonic Sensors, 2016, 6(2): 132.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!