中国激光, 2008, 35 (9): 1283, 网络出版: 2008-09-09   

超分辨远场生物荧光成像——突破光学衍射极限 下载: 1319次

Superresolution Far-Field Fluorescence Bio-Imaging: Breaking the Diffraction Barrier
作者单位
中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
引用该论文

毛峥乐, 王琛, 程亚. 超分辨远场生物荧光成像——突破光学衍射极限[J]. 中国激光, 2008, 35(9): 1283.

Mao Zhengle, Wang Chen, Cheng Ya. Superresolution Far-Field Fluorescence Bio-Imaging: Breaking the Diffraction Barrier[J]. Chinese Journal of Lasers, 2008, 35(9): 1283.

参考文献

[1] http://nano.cancer.gov/resource_center/tech_backgrounder.asp

[2] R. Hooke. Micrographia [M]. London: Royal Society of London, 1664

[3] . Abbe. Contributions to the theory of the microscope and that microscopic perception[J]. Arch. Microsc. Anat., 1873, 9: 413-468.

[4] . Attwood. New opportunities at soft-X-ray wavelengths[J]. Phys. Today, 1992, 45(8): 24-31.

[5] . V. Matz, A. F. Fradkov, Y. A. Labas et al.. Fluorescent proteins from nonbioluminescent Anthozoa species[J]. Nat. Biotechnol., 1999, 17(10): 969-973.

[6] . Knig, T. Krasieva, E. Bauer et al.. Cell damage by UVA radiation of a mercury microscopy lamp probed by autofluorescence modifications, cloning assay, and comet assay[J]. J. Biomed. Opt., 1996, 1: 217-222.

[7] L. Reimer. Scanning Electron Microscopy: Physics of Image Formation and Microanalysis [M]. Berlin: Springer-Verlag, 2000

[8] JintaoYang, Wendong Xu. Scanned-cantilever atomic force microscope with large scanning range [J]. Chin. Opt. Lett., 2006, 4(10): 580~582

[9] . Design of optical tracking for scanned cantilever atomic force microscope[J]. Chinese J. Lasers, 2006, 33(1): 26-30.

[10] . . Photon scanning tuneling microsope combined with atomic forece microscope[J]. Acta Optica Sinica, 2005, 25(8): 1099-1104.

[11] . Binnig, H. Rohrer, Ch. Gerber et al.. Surface studies by scanning tunneling microscopy[J]. Phys. Rev. Lett., 1982, 49: 56-60.

[12] . H. Synge. A suggested method for extending microscopic resolution into the ultra-microscopic region[J]. Philos. Mag., 1928, 6: 356.

[13] . Michaelis,C. Hettich, J. Mlynek et al.. Optical microscopy using a single- molecule light source[J]. Nature, 2000, 405: 325-327.

[14] . . Research of surface plasmon resonance on goldfilm using scanning near-field optical microscopy[J]. Acta Optica Sinica, 2006, 26(8): 1236-1239.

[15] . Detection angle and polarization dependences of the interferometric imaging with near-field scanning microscopy[J]. Acta Optica Sinica, 2006, 26(3): 425-429.

[16] . . Numerical analysis of interaction and perturbation between evanescent field and probe in optical field detection by SNOM[J], Acta Optica Sinica, 2005, 25(4): 465-469徐铁军,许吉英,王佳等. 扫描近场光学显微镜探针与光场相互作用的分析[J]. 光学学报, 2005, 25(4): 465-469.

[17] . Toomre, D. J. Manstein. Lighting up the cell surface with evanescent wave microscopy[J]. Trends Cell Biol., 2001, 11(7): 298-303.

[18] J. W. Goodman. Introduction to Fourier Optics [M]. Beijing: Science Press, 1976, 18~23J. W. 顾德门. 傅里叶光学导论[M],北京:科学出版社, 1976, 18~23

[19] . Garini, B. J. Vermolenand, I. T. Young. From micro to nano: recent advances in high-resolution microscopy[J]. Curr. Opin. Biotechnol., 2005, 16: 3-12.

[20] . Rayleigh. On the manufacture and theory of diffraction-gratings[J]. Philos. Mag., 1874, 47: 193.

[21] . Schrader, S. W. Hell, H. T. M. VanderVoort. Three-dimensional superresolution with a 4Pi-confocal microscope using image restoration[J]. J. Appl. Phys., 1998, 84: 4033-4042.

[22] . Nagorni, S. W. Hell. Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy I. Comparative study of concepts[J]. J. Opt. Soc. Am. A, 2001, 18(1): 36-48.

[23] . Nagorni, S. W. Hell. Coherent use of opposing lenses for axial resolution increase. II. Power and limitation of nonlinear image restoration[J]. J. Opt. Soc. Am. A, 2001, 18(1): 49-54.

[24] . Alexander, S. W. Hell. Fluorescence microscopy with super-resolved optical sections[J]. Trends Cell Biol., 2005, 15(4): 207-215.

[25] M. G. L. Gustafsson. Doubling the lateral resolution of wide-field fuorescence microscopy using structured illumination [C]. SPIE, 2000, 3919: 141~150

[26] S. W. Hell. Double-Scanning Confocal Microscope [P]. Europe Patent, 0491289, 1990

[27] . Heintzmann, T. M. Jovin, C. Cremer. Saturated patterned excitation microscopy: a concept for optical resolution improvement[J]. J. Opt. Soc. Am. A, 2002, 19(8): 1599-1609.

[28] . Westphal, L. Kastrup, S. W. Hell. Lateral resolution of 28 nm (λ/25) in far-field fluorescence microscopy[J]. Appl. Phys. B, 2003, 77: 377-380.

[29] . B. Sekar, A. Periasamy. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations[J]. J. Cell Biol., 2003, 160(5): 629-633.

[30] M. Dyba. STED-4Pi Microscopy [D]. Rupertus-Carola University of Heidelberg, 2004, 38~43

[31] . W. Hell, E. H. K. Stelzer. Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation[J]. Opt. Commun., 1992, 93: 277-282.

[32] M. Minsky. Microscopy Apparatus [P]. US Patent, 3013467, 1961

[33] . Ota, H. Fukuyama, Y. Ishihara et al.. The keratocyte network of human cornea: A three-dimensional study using confocal laser scanning fluorescence microscopy[J]. Cornea, 2000, 19(2): 185-193.

[34] N.A.M. Verhaegh, D. Asnaghi, H. N. W. Lekkerkerker. Transient gels in colloid-polymer mixtures studied with fluorescence confocal scanning laser microscopy [J]. Physica A, 1999, 264 (1-2): 64~74

[35] . R. Swedlow, K. Hu, P. D. Andrews et al.. Measuring tubulin content in toxoplasma gondii: A comparison of laser-scanning confocal and wide-field fluorescence microscopy[J]. PNAS, 2002, 99(4): 2014-2019.

[36] . Oheim, D. J. Michael, M. Geisbauer et al.. Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches[J]. Adv. Drug Deliv. Rev., 2006, 58: 788-808.

[37] T. Wilson. The role of the pinhole in confocal imaging system [C]. J. Pawley, Handbook of biological confocal microscopy, New York: Plenum Press, 1995, 167~168

[38] T. R. Corle, G. S. Kino. Confocal Scanning Optical Microscopy and Related Imaging Systems [M]. San Diego: Academic Press, 1996, 74

[39] J. Pawley. Fundamental limits in confocal microscopy [C]. J. Pawley, Handbook of biological confocal microscopy, New York: Plenum Press, 1995, 19~38

[40] . Glass, T. Dabbs. The experimental effect of detector size on confocal lateral resolution[J]. J. Microsc., 1991, 164: 153-158.

[41] . Wilson. Optical sectioning in confocal fluorescent microscopes[J]. J. Microsc., 1989, 154: 143-156.

[42] . R. Sandison, D. W. Piston, R. M. Williams et al.. Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes[J]. Appl. Opt., 1995, 34: 3576-3588.

[43] . J. Cox, C. J. R. Sheppard. Information capacity and resolution in an optical system[J]. J. Opt. Soc. Am. A, 1986, 3: 1152-1158.

[44] . E. Meyr, N. Otberg, W. Sterry et al.. In vivo confocal scanning laser microscopy: comparison of the reflectance and fluorescence mode by imaging human skin[J]. J. Biomed. Opt., 2006, 11(4): 044012.

[45] . Vivares, E. W. Kaler, A. M. Lenhoff. Polyhedral instability of glucose isomerase crystals as revealed by confocal scanning fluorescence microscopy[J]. Crys. Growth Des., 2007, 7(8): 1411-1415.

[46] . H. K. Stelzer, S. Lindek. Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy[J]. Opt. Commun., 1994, 111: 536-547.

[47] . Lindek, E. H. K. Stelzer. Optical transfer functions for confocal theta fluorescence microscopy[J]. J. Opt. Soc. Am. A, 1996, 13(3): 479-482.

[48] . Haeberl, H. Furukawa, K. Tenjimbayashi. Polarized confocal theta microscopy[J]. C. R. Physique, 2002, 3: 1445-1450.

[49] . Lindek, C. Cremer, E. H. K. Stelzer. Confocal theta fluorescence microscopy with annular apertures[J]. Appl. Opt., 1996, 35(1): 126-130.

[50] . Lindek, E. K. Stelzer. Single-lens theta microscopy - a new implementation of confocal theta microscopy[J]. J. Microsc., 1997, 188: 280-284.

[51] . Lindek, J. Swoger, E. H. K. Stelzer. Single-lens theta microscopy: resolution, efficiency and working distance[J]. J. Mod. Opt., 1999, 46: 843-858.

[52] . Geppert-Mayer. On elementary processes with two quantum steps[J]. Ann. Phys., 1931, 9: 273-294.

[53] . J. Bradley, M. H. R. Hutchinson, H. Koetser. Interactions of pico-second laser pulses with organic molecules. II. Two-photon absorption cross-sections[J]. Proc. R. Soc. Lond. A, 1972, 329: 105-119.

[54] . P. Schafer, H. Mller. Tunable dyering-laser[J]. Opt. Commun., 1971, 2: 407-409.

[55] J. A. Valdemanis, R. L. Fork. Design considerations for a femtosecond pulse laser: balancing self phase modulation, group velocity dispersion, saturable absorption, and saturable gain [J]. IEEE J. Quantum Electron., 1986, QE-22(1):112~118

[56] . E. Spence, P. N. Kean, W. Sibbert. 60-fsec pulse generation from a self-mode- locked Ti:sapphire laser[J]. Opt. Lett., 1991, 16: 42-44.

[57] W. Denk, J. Strickler, W. W. Webb. Two-Photon Laser Microscopy [P]. US Patent, 5034613, 1991

[58] . Denk, J. H. Strickler, W. W. Webb. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248: 73-76.

[59] . R. Zipfel, R. M. Williams, W. W. Webb. Nonlinear magic: Multiphoton microscopy in the biosciences[J]. Nat. Biotechnol., 2003, 21(11): 1369-1377.

[60] . Rubart. Two-photon microscopy of cells and tissue[J]. Circ. Res., 2004, 95: 1154-1166.

[61] . Gu, C. J. R. Sheppard. Comparison of three-dimensional imaging properties between two-photon and single-photon fluorescence microscopy[J]. J. Microsc., 1995, 177: 128-137.

[62] . Xu, W. Zipfel, J. B. Shear et al.. Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy[J]. PNAS, 1996, 93: 10763-10768.

[63] . R. Masters, P. T. C. So, E. Gratton. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin[J]. Biophys. J., 1997, 72: 2405-2412.

[64] . R. Masters, P. T. C. So. Multi-photon excitation microscopy and confocal microscopy imaging of in vivo human skin: a comparison[J]. Microsc. Microanal., 1999, 5: 28-289.

[65] . Diaspro, M. Robello. Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures[J]. J. Photochem. Photobio. B-Biol., 2000, 55(1): 1-8.

[66] . Svoboda, R. Yasuda. Principles of two-photon excitation microscopy and its applications to neuroscience[J]. Neuron, 2006, 50: 823-839.

[67] . Theer, M. T. Hasan, W. Denk. Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier[J]. Opt. Lett., 2003, 28(12): 1022-1024.

[68] . Theer, W. Denk. On the fundamental imaging-depth limit in two-photon microscopy[J]. J. Opt. Soc. Am. A, 2006, 23(12): 3139-3149.

[69] P. Theer. On the Fundamental Imaging-Depth Limit in Two-Photon Microscopy [D]. Ruperto-Carola University of Heidelberg, 2004, 30~40

[70] . . Construction of random-access scanning multiphoton fluorescence microscope system[J]. Acta Optica Sinica, 2006, 26(12): 1823-1828.

[71] . A. Molitoris, R. M. Sandova. Intravital multiphoton microscopy of dynamic renal process[J]. Am. J. Physiol. -Renal Physiol., 2005, 288: 1084-1089.

[72] . Oheim, E. Beaurepaire, E. Chaigneau et al.. Two-photon microscopy in brain tissue: parameters influencing the imaging depth[J]. J. Neurosci. Methods, 2001, 111(1): 29-37.

[73] . Bakalova. Ultra-fast biosensors and multi-photon microscopy in the future of brain studies[J]. Cell. Mol. Neurobio., 2007, 27(3): 359-365.

[74] Jianxin Chen, Shuangmu Zhuo, Tianshu Luo et al..Two-photon excited spectroscopies of ex vivo human skin endogenous species irradiated by femtosecond laser pulses [J].Chin. Opt. Lett., 2006, 4(10): 598~600

[75] . C. Malone, A. F. Hood, T. Conley et al.. Three-dimensional imaging of human skin and mucosa by two-photon laser scanning microscopy[J]. J. Cutan. Pathol., 2002, 29(8): 453-458.

[76] . Bousso, E. A. Robey. Dynamic behavior of T cells and thymocytes in lymphoid organs as revealed by two-photon microscopy[J]. Immunity, 2004, 21: 349-355.

[77] . K. Jain, L. L. Munn, D. Fukumura. Dissecting tumor pathophysiology using intravital microscopy[J]. Nat. Rev. Cancer, 2002, 2: 266-276.

[78] . H. Patterson, D. W. Piston. Photobleaching in two-photon excitation microscopy[J]. Biophys. J., 2000, 78: 2159-2162.

[79] . D. Higdon, P. Torok, T. Wilson. Imaging properties of high aperture multiphoton fluorescence scanning optical microscopes[J]. J. Microsc., 1999, 193: 127-141.

[80] . J. R. Sheppard, M. Gu. Image formation in two-photon fluorescence microscopy[J]. Optik, 1990, 86: 104-106.

[81] . Gryczynski, H. Malak, J. R. Lakowicz. Two-color two-photon excitation of Indole[J]. Biospectroscopy, 1997, 3: 97-101.

[82] . Lim, C. Saloma. Confocality condition in two-color excitation microscopy with two focused excitation beams[J]. Opt. Commun., 2002, 207: 121-130.

[83] . M. Blanca, C. Saloma. Two-color excitation fluorescence microscopy through highly scattering media[J]. Appl. Opt., 2001, 40(16): 2722-2729.

[84] J. Palero, W. Garcia, C. Saloma. Two-color (two-photon) excitation fluorescence with two confocal beams and a Raman shifter [J]. Opt. Commun., 2002, 211(1-6): 65~71

[85] . Lim, C. Saloma. Primary spherical aberration in two-color two-photon excitation fluorescence microscopy with two confocal excitation beams[J]. Appl. Opt., 2003, 42(17): 3398-3406.

[86] . O. Cambaliza, C. Saloma. Advantages of two-color excitation fluorescence microscopy with two confocal excitation beams[J]. Opt. Commun., 2000, 184: 25-35.

[87] . . Reduced deep-tissue image degradation in three-dimensional multiphoton microscopy with concentric two-color two-photon fluorescence excitation[J]. J. Opt. Soc. Am. B, 2008, 25(6): 976-982.

[88] . G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. J. Microsc., 2000, 198: 82-87.

[89] R. Heintzmann, C. Cremer. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating [C]. SPIE, 1998, 3568: 185~195

[90] . T. Frohn, H. F. Knapp, A. Stemmer. True optical resolution beyond the Rayleigh limit achieved by standing wave illumination[J]. PNAS, 2000, 97(13): 7232-7236.

[91] J. T. Frohn. Super-resolution Fluorescence Microscopy by Structured Light Illumination [D]. Swiss Federal Institute of Technology, 2000, 7~12

[92] . Juskaitis, T. Wilson, M. A. A. Neil et al.. Efficient real-time confocal microscopy with white light sources[J]. Nature, 1996, 383: 804-806.

[93] . A. A. Neil, T. Wilson, R. Juskaitis. Method of obtaining optical sectioning by using structured light in a conventional microscope[J]. Opt. Lett., 1997, 22: 1905-1907.

[94] . A. A. Neil, R. Juskaitis, T. Wilson. Real time 3D fluorescence microscopy by two beam interference illumination[J]. Opt. Commun., 1998, 153: 1-4.

[95] . A. A. Neil, T. Wilson, R. Juskaitis. A light efficient optically sectioning microscope[J]. J. Microsc., 1998, 189: 114-117.

[96] . Heintzmann. Saturated patterned excitation microscopy with two-dimensional excitation patterns[J]. Micron, 2003, 34: 283-291.

[97] . G. L. Gustafsson. Nonlinear structured-illumination microscopy wide-field fluorescence imaging with theoretically unlimited resolution[J]. PNAS, 2005, 102(37): 13081-13086.

[98] . E. Hnninen, S. W. Hell, A. J. Salo et al.. Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research[J]. Appl. Phys. Lett., 1995, 66: 698-700.

[99] F. Lanni, D. L. Taylor, A. S. Waggoner. Standing Wave Luminescence Microscopy [P]. US Patent, 4621911, 1986

[100] F. Lanni, D. L. Taylor, B. Bailey. Field Synthesis and Optical Subsectioning for Standing Wave Microscopy [P]. US Patent, 5394268, 1995

[101] F. Lanni, D. L. Taylor, B. Bailey. Field Synthesis and Optical Subsectioning for Standing Wave Microscopy (continuation in part) [P]. US Patent, 5394268, 1995

[102] B. Bailey, V. Krishnamurthi, D. L. Farkas et al.. Three-dimensional imaging of biological specimens with standing wave fluorescence microscopy [C]. SPIE, 1994, 2184: 208~213

[103] . Bailey, D. L. Farkas, D. L. Taylor et al.. Enhancement of axial resolution in fluorescence microscopy by standing wave excitation[J]. Nature, 1993, 366: 44-48.

[104] V. Krishnamurthi, B. Bailey, F. Lanni. Image processing in 3-D standing wave fluorescence microscopy [C].SPIE, 1994, 2655: 18~25

[105] M. G. L. Gustafsson, D. A. Agard, J. W. Sedat. 3D widefield microscopy with two objective lenses: experimental verification of improved axial resolution [C]. SPIE, 1996, 2655: 62~66

[106] . G. L Gustafsson, D. A. Agard, J. W. Sedat. I5M: 3D widefield light microscopy with better than 100 nm axial resolution[J]. J. Microsc., 1999, 195(1): 10-16.

[107] M. G. L. Gustafsson, D. A. Agard, J. W. Sedat. Method and Apparatus for Three-dimensional Microscopy with Enhanced Depth Resolution [P]. US Patent, 5671085, 1997

[108] M. G. L. Gustafsson, D. A. Agard, J. W. Sedat. Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses [C]. SPIE, 1995, 2412: 147

[109] . W. Hell, E. H. K. Stelzer. Properties of a 4Pi-confocal fluorescence microscope[J]. J. Opt. Soc. Am. A, 1992, 9: 2159-2166.

[110] . Nagorni, S. W. Hell. 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100-to 150-nm resolution[J]. J. Struct. Biol., 1998, 123: 236-247.

[111] . Schrader, K. Bahlmann, G. Giese et al.. 4Pi-confocal imaging in fixed biological specimens[J]. Biophys. J., 1998, 75: 1659-1668.

[112] . W. Hell, S. Lindek, C. Cremer et al.. Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution[J]. Appl. Phys. Lett., 1994, 64: 1335-1337.

[113] . Gugel, J. Bewersdorf, S. Jakobs et al.. Cooperative 4Pi excitation and detection yields 7-fold sharper optical sections in live cell microscopy[J]. Biophys. J., 2004, 87: 4146-4152.

[114] . Schrader, M. Kozubek, S. W. Hell et al.. Optical transfer functions of 4Pi confocal microscopes: theory and experiment[J]. Opt. Lett., 1997, 22: 436-438.

[115] . Martinez-Corral, M. T. Caballero, A. Pons et al.. Sidelobe decline in single-photon 4Pi microscopy by Toraldo rings[J]. Micron, 2003, 34: 319-325.

[116] . C. Lang, J. Engelhardt, S. W. Hell. 4Pi microscopy with linear fluorescence excitation[J]. Opt. Lett., 2007, 32(3): 259-261.

[117] . C. Lang, T. Müller, J. Engelhardt et al.. 4Pi microscopy of type A with 1-photon excitation in biological fluorescence imaging[J]. Opt. Express, 2007, 15(5): 2459-2467.

[118] . Gu, C. J. R. Sheppard. Three-dimensional transfer functions in 4Pi confocal microscopes[J]. J. Opt. Soc. Am. A, 1994, 11: 1619-1627.

[119] . W. Hell, S. Lindek, E. H. K. Stelzer. Enhancing the axial resolution in far-field light microscopy: two-photon 4Pi confocal fluorescence microscopy[J]. J. Mod. Opt., 1994, 41(4): 675-681.

[120] . H. Richardson. Bayesian-based iterative method of image restoration[J]. J. Opt. Soc. Am., 1972, 62: 55-59.

[121] . Midorikawa. Two-color two-photon 4Pi fluorescence microscopy[J]. Opt. Lett., 2004, 29(12): 1354-1356.

[122] . Egner, M. Schrader, S. W. Hell. Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton and 4Pi-microscopy[J]. Opt. Commun., 1998, 153: 211-217.

[123] . Bewersdorf, R. Pick, S. W. Hell. Multifocal multiphoton microscopy[J]. Opt. Lett., 1998, 23(9): 655-657.

[124] . Egner, S. Jakobs, S. W. Hell. Fast 100-nm resolution 3D-microscope reveals structural plasticity of mitochondriain live yeast[J]. PNAS, 2002, 99: 3370-3375.

[125] . Egner, S. Verrier, A. Goroshkov et al.. 4Pi-microscopy of the Golgi apparatus in live mammalian cells[J]. J. Struct. Biol., 2003, 147: 70-76.

[126] . W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy[J]. Opt. Lett., 1994, 19(11): 780-782.

[127] A. Einstein.On the quantum theory of radiation [J].Phys. J. 1917, 18: 121~128 (in German)

[128] . Kastrup, H. Blom, C. Eggeling et al.. Fluorescence fluctuation spectroscopy in subdiffraction focal volumes[J]. Phys. Rev. Lett., 2005, 94: 178104.

[129] . Westphal, S. W. Hell. Nanoscale resolution in the focal plane of an optical microscope[J]. Phys. Rev. Lett., 2005, 94: 143903.

[130] S. W. Hell. Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering [C]. J. R. Lakowicz, Fluorescence spectroscopy, New York: Plenum Press, 1997, 5: 361~422

[131] T. A. Klar. Progress in Stimulated Emission Depletion Microscopy [D]. Rupertus-Carola University of Heidelberg, 2001, 10~21

[132] . . Model design and parameter optimization of stimilated emission depletion fluorescence microscopy[J]. Acta Optica Sinica, 2006, 26(5): 720-725.

[133] . A. Klar, E. Engel, S. W. Hell. Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes[J]. Phys. Rev. E, 2001, 64: 066613.

[134] . A. Klar, S. Jakobs, M. Dyba et al.. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. PNAS, 2000, 97: 8206-8210.

[135] . Dyba, S. W. Hell. Focal spots of size of λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution[J]. Phys. Rev. Lett., 2002, 88: 163901.

[136] M. Dyba, J. Keller, S. W. Hell. Phase filter enhanced STED-4Pi fluorescence microscopy theory and experiment [J]. New J. Phys. 2005, 7: 134

[137] . I. Willig, S. O. Rizzoli, V. Westphal et al.. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 2006, 440(7086): 935-939.

[138] . J. Kittel, C. Wichmann, T. M. Rasse et al.. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release[J]. Science, 2006, 312(5776): 1051-1054.

[139] . Donnert, J. Keller, R. Medda et al.. Macromolecular-scale resolution in biological fluorescence microscopy[J]. PNAS, 2006, 103(31): 11440-11445.

[140] . I. Willig, J. Keller, M. Bossi et al.. STED microscopy resolves nanoparticle assemblies[J]. New J. Phys., 2006, 8: 106.

[141] . I. Willig, B. Harke, R. Medda et al.. STED microscopy with continous wave beams[J]. Nat. Methods, 2007, 4(11): 915-918.

[142] . Dyba, S. W. Hell. Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission[J]. Appl. Opt., 2003, 42(25): 1523-1529.

[143] . Eggeling, A. Volkmer, C. A. M. Seidel. Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy[J]. Chem.Phys.Chem.., 2005, 6: 791-804.

[144] . W. Hell, M. Kroug. Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit[J]. Appl. Phys. B, 1995, 60: 495-497.

[145] . Bretschneider, C. Eggeling, S. W. Hell. Breaking the diffraction barrier in fluorescence microscopy by optical shelving[J]. Phys. Rev. Lett., 2007, 98: 218103.

[146] . W. Hell. Towards the nanoscopy[J]. Nat. Biotechnol., 2003, 21(11): 1347-1355.

[147] . W. Hell. Far-field optical nanoscopy[J]. Science, 2007, 316: 1153-1158.

[148] . Keller, A. Schnle, S. W. Hell. Efficient fluorescence inhibition patterns for RESOLFT microscopy[J]. Opt. Express, 2007, 15(6): 3361-3371.

[149] . Sauer. Reversible molecular photoswitches: A key technology for nanoscience and fluorescence imaging[J]. PNAS, 2005, 102: 9433-9434.

[150] . M. Chudakov, V. V. Belousov, A. G. Zaraisky et al.. Kindling fluorescent proteins for precise in vivo photolabeling[J]. Nat. Biotechnol., 2003, 21: 191-194.

[151] . A. Lukyanov, A. F. Fradkov, N. G Gurskaya et al.. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog[J]. J. Biol. Chem., 2000, 275: 25879-25882.

[152] . Ando, H. Mizuno, A. Miyawaki. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting[J]. Science, 2004, 306: 1370-1373.

[153] . Habuchi, R. Ando, P. Dedecker et al.. From the cover: Reversible single-molecule photoswitching in the GFP-like fluorescent protein dronpa[J]. PNAS, 2005, 102: 9511-9516.

[154] . Hofmann, C. Eggeling, S. Jakobs et al.. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins[J]. PNAS, 2005, 102(49): 17565-17569.

[155] . W. Hell. Strategy for far-field optical imaging and writing without diffraction limit[J]. Phys. Lett. A, 2004, 326: 140-145.

[156] . Bossi, J. Flling, M. Dyba et al.. Breaking the diffraction resolution barrier in far field microscopy by molecular optical bistability[J]. New J. Phys., 2006, 8: 275.

[157] . W. Hell, S. Jakobs, L. Kastrup. Imaging and writing at the nanoscale with focused visible light through saturable optical transitions[J]. Appl. Phys. A, 2003, 77: 859-860.

[158] . S. White, R. J. Errington. Fluorescence techniques for drug delivery research: theory and practice[J]. Advanced Drug Delivery Reviews, 2005, 57: 17-42.

[159] D. Schachtman, W. H. Liu. GFP-based FRET microscopy in living plant cells [J], Trends in Plant Sci., 1999, 4(7): 287~291

[160] . Truong, M. Ikura. The use of FRET imaging microscopy to detect protein\|protein interactions and protein conformational changes in vivo[J]. Curr. Opin. Struct. Biol., 2001, 11: 573-578.

[161] H. Edelhoch, L. Brand, M. Wilchek. Fluorescence studies with tryptophyl peptides [J]. Isr. J. Chem. 1963, 1: 216~217

[162] T. Frster. Delocalized excitation and excitation transfer [C]. O. Sinanoglu, Modern Quantum Chemistry, New York: Academic Press, 1965, 3: 93~137

[163] . B. Sekar, A. Periasamy. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations[J]. J. Cell Biol., 2003, 160(5): 629-633.

[164] . A. Hink, T. Bisselin, A. J. Visser. Imaging protein-protein interactions in living cells[J]. Plant Mol. Biol., 2002, 50: 871-883.

[165] . W. Gordon, G. Berry, X. H. Liang et al.. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy[J]. Biophys. J., 1998, 74: 2702-2713.

[166] . Hoppe, K. Christensen, J. A. Swanson. Fluorescence resonance energy transfer-based stoichiometry in living cells[J]. Biophys. J., 2002, 83: 3652-3664.

[167] . Elangovan, H. Wallrabe, Y. Chen et al.. Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy[J]. Methods, 2003, 29: 58-73.

[168] . S. Kraynov, C. Chamberlain, G. M. Bokoch et al.. Localized Rac activation dynamics visualized in living cells[J]. Science, 2000, 290: 333-337.

[169] . . A high repetition rate picosecond streak camera for two-photon excited fluorescence lifetime microscopic imaging[J]. Acta Optica Sinica, 2006, 26(3): 373-378.

[170] . Suhling, P. M. W. French, D. Phillips. Time-resolved fluorescence microscopy[J]. Photochem. Photobiol. Sci., 2005, 4: 13-22.

[171] . Festy, S. M. Ameer-Beg, T. Ng et al.. Imaging proteins in vivo using fluorescence lifetime microscopy[J]. Mol. BioSyst., 2007, 3: 381-391.

[172] . Elangovan, R. N. Day, A. Periasamy. Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell[J]. J. Microsc., 2002, 205: 3-14.

[173] . Peter, S. M. Ameer-Beg. Imaging molecular interactions by multiphoton FLIM[J]. Biol. Cell, 2004, 96: 231-236.

[174] . J. Bacskai, J. Skoch, G. A. Hickey et al.. Fluorescence resonance energy transfer determinations using multiphoton fluorescence life time imaging microscopy to characterize amyloid-beta plaques[J]. J. Biomed. Opt., 2003, 8: 368-375.

[175] . Yasuda. Imaging spatiotemporal dynamics of neuronal signaling using fluorescence resonance energy transfer and fluorescence lifetime imaging microscopy[J]. Curr. Opin. Neurobiol., 2006, 16: 551-561.

[176] . N. Day, D. W. Piston. Spying on the hidden lives of proteins[J]. Nat. Biotechnol., 1999, 17: 425-426.

[177] . Gratton, S. Breusegem, J. Sutin et al.. Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods[J]. J. Biomed. Opt., 2003, 8: 381-390.

[178] W. Becker. Advanced Time-Correlated Single Photon Counting Techniques [M]. New York: Springer, 2005, 20~24

[179] . J. D. Grauw, H. C. Gerritsen. Multiple time-gate module for fluorescence lifetime imaging[J]. Appl. Spectrosc., 2001, 55: 670-678.

[180] K. Carlsson, J. Philip. Theoretical investigation of the signal-to-noise ratio for different fluorescence lifetime imaging techniques [C]. SPIE, 2002, 4622:70~78

[181] . A. Jares-Erijman, T. M. Jovin. FRET imaging[J]. Nat. Biotechnol., 2003, 21(11): 1387-1395.

[182] . K. Kenworthy, M. Edidin. Distribution of a glycosylphosphatidylinositol -anchored protein at the apical surface of MDCK cells examined at a resolution of <10  using imaging fluorescence resonance energy transfer[J]. J. Cell Biol., 1998, 142: 69-84.

[183] . K. M. Chan, R. M. Siegel, D. Zacharias et al.. Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein[J]. Cytometry, 2001, 44: 366-368.

[184] . E Dickinson, G. Bearman, S. Tille et al.. Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy[J]. Biotechniques, 2001, 31: 1272.

[185] . Zimmermann, J. Rietdorf, R. Pepperkok. Spectral imaging and its applications in live cell microscopy[J]. FEBS Lett., 2003, 546(1): 87-92.

[186] . L. Mattheyses, A. D. Hoppe, D. Axelrod. Polarized fluorescence resonance energy transfer microscopy[J]. Biophys. J., 2004, 87: 2787-2797.

[187] . S. Lidke, P. Nagy, B. G. Barisas et al.. Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET)[J]. Biochem. Soc. Trans., 2003, 31: 1020-1027.

[188] . Nagai, S. Yamada, T. Tominaga et al.. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins[J]. PANS, 2004, 101: 10554-10559.

[189] . V. Overton, K. J. Blumer. G-protein-coupled receptors function as oligomers in vivo[J]. Curr. Biol., 2000, 10: 341-344.

[190] . Sorkin, M. McClure, F. Huang et al.. Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy[J]. Curr. Biol., 2000, 10(21): 1395-1398.

[191] . G. H. Immink, T. W. J. Gadella, S. Ferrario et al.. Analysis of MADS box protein-protein interactions in living plant cells[J]. PNAS, 2002, 99: 2416-2421.

[192] . Nagai, M. Miyazaki, R. Aoki et al.. A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo[J]. Nat. Biotechnol., 2000, 18: 313-316.

[193] . W. Vanderklish, L. A. Krushel, B. H. Holst et al.. Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer[J]. PNAS, 2000, 97: 2253-2258.

[194] B. Ponsioen, J. Zhao, J. Riedl et al.. Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator [J] EMBO Rep., 2004, 5: 1176~1180

[195] . A.Rizzo. An improved cyan fluorescent protein variant useful for FRET[J]. Nat. Biotechnol., 2004, 22: 445-449.

[196] . J. Kremers, J. Goedhart, E. B. van Munster et al.. Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Frster radius[J]. Biochemistry, 2006, 45: 6570-6580.

[197] . C. Shaner, R. E. Campbell, P. A. Steinbach et al.. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein[J]. Nat. Biotechnol., 2004, 22: 1567-1572.

[198] . Nagai, K. Ibata, E. S. Park et al.. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications[J]. Nat. Biotechnol., 2002, 20: 87-90.

[199] . Yildiz, J. N. Forkey, S. A. McKinney et al.. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization[J]. Science, 2003, 300: 2061-2065.

[200] . K. Cheezum, W. F. Walker, W. H. Guilford. Quantitative comparison of algorithms for tracking single fluorescent particles[J]. Biophys. J., 2001, 81: 2378-2388.

[201] . E. Thompson, D. R. Larson, W. W. Webb. Precise nanometer localization analysis for individual fluorescent probes[J]. Biophys. J., 2002, 82: 2775-2783.

[202] . E. Moerner, L. Kador. Optical detection and spectroscopy of single molecules in a solid[J]. Phys. Rev. Lett., 1989, 62: 2535-2538.

[203] . Orrit, J. Bernard. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal[J]. Phys. Rev. Lett., 1990, 65: 2716-2719.

[204] . M. Dickson, D. J. Norris, Y. Tzeng et al.. Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels[J]. Science, 1986, 274: 966-969.

[205] . Yang, G. Luo, P. Karnchanaphanurach et al.. Protein conformational dynamics probed by single-molecule electron transfer[J]. Science, 2003, 302: 262-266.

[206] . S. Xie. Single-molecule spectroscopy and dynamics at room temperature[J]. Acc. Chem. Res., 1996, 29: 598-606.

[207] . P. Ambrose, P. M. Goodwin, J. H. Jett et al.. Single molecule fluorescence spectroscopy at ambient temperature[J]. Chem. Rev., 1999, 99: 2929-2956.

[208] . J. Peterman, H. Sosa, W. E. Moerner. Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors[J]. Annu. Rev. Phys. Chem., 2004, 55: 79-96.

[209] . S. Yeung. Dynamics single biomolecular in free solution[J]. Annu. Rev. Phys. Chem., 2004, 55: 97-126.

[210] . Barkai, Y. J. Jung, R. Silbey. Theory of single-molecule spectroscopy: beyond the ensemble average[J]. Annu. Rev. Phys. Chem., 2004, 55: 457-507.

[211] . Kilzer, M. Orrit. Single-molecule optics[J]. Annu. Rev. Phys. Chem., 2004, 55: 585-611.

[212] . E. Barbara. Single-molecule spectroscopy[J]. Acc. Chem. Res., 2005, 38: 503-610.

[213] . Betzig. Proposed method for molecular optical imaging[J]. Opt. Lett., 1985, 20(3): 237-239.

[214] . S. Churchman, Z. kten, R. S. Rock et al.. Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time[J]. PNAS, 2005, 102(5): 1419-1423.

[215] . S. Churchman, H. Flyvbjerg, J. A. Spudich. A non-Gaussian distribution quantifies distances measured with fluorescence localization techniques[J]. Biophys. J., 2006, 90: 668-671.

[216] . H. Qu, D. Wu, L. Mets et al.. Nanometer-localized multiple single-molecule fluorescence microscopy[J]. PNAS, 2004, 101(31): 11298-11303.

[217] . P. Gordon, T. Ha, P. R. Selvin. Single-molecule high-resolution imaging with photobleaching[J]. PNAS, 2004, 101(17): 6462-6465.

[218] . A. Lidke, B. Rieger, T. M. Jovin et al.. Superresolution by localization of quantum dots using blinking statistics[J]. Opt. Express, 2005, 13(18): 7052-7062.

[219] . Betzig, R. Sougrat, O. W. Lindwasser et al.. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313: 1642-1645.

[220] G. H. Patterson, E. Betzig, J. Lippincott-Schwartz1 et al.. Developing photoactivated location microscopy (PALM), Biomedical imaging: from nano to macro [C]. 4th IEEE International Symposium, 2007, 940~943

[221] . Chen, H. E. Hamm. PALM reading: Seeing the future of cell biology at higher resolution[J]. Developmental Cell, 2006, 11: 438-439.

[222] . T. Hess, T. P. K. Girirajan, M. D. Mason. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophys. J., 2006, 91: 4258-4272.

[223] . Ando, H. Hama, M. Yamamoto-Hino et al.. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein[J]. PNAS, 2002, 99(20): 12651-12656.

[224] . H. Patterson, J. Lippincott-Schwartz. A photoactivatable GFP for selective photolabeling of proteins and cells[J]. Science, 2002, 297: 1873-1877.

[225] . Wiedenmann, S. Ivanchenko, F. Oswald et al.. EosFP, a fluorescent marker protein with UV- inducible green-to-red fluorescence conversion[J]. PNAS, 2004, 101: 15905-15910.

[226] . A. Lukyanov, D. M. Chudakov, S. Lukyanov et al.. Photoactivatable fluorescent proteins[J]. Nat. Rev. Mol. Cell Biol., 2005, 6: 885-891.

[227] . E. Moerner. Single-molecule optical spectroscopy of autofluorescent proteins[J]. J. Chem. Phys., 2002, 117(24): 10925-10937.

[228] R. Rigler, M. Orrit, T. Basché. Single molecule spectroscopy [C]. Nobel conference lectures, Berlin: Spirnger, 2001

[229] . J. Rust, M. Bates, X. W. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy(STORM)[J]. Nat. Methods, 2006, 3(10): 793-795.

[230] . E. Moerner. New directions in single-molecule imaging and analysis[J]. PNAS, 2007, 104(311): 12596-12602.

毛峥乐, 王琛, 程亚. 超分辨远场生物荧光成像——突破光学衍射极限[J]. 中国激光, 2008, 35(9): 1283. Mao Zhengle, Wang Chen, Cheng Ya. Superresolution Far-Field Fluorescence Bio-Imaging: Breaking the Diffraction Barrier[J]. Chinese Journal of Lasers, 2008, 35(9): 1283.

本文已被 15 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!