中国激光, 2008, 35 (9): 1283, 网络出版: 2008-09-09   

超分辨远场生物荧光成像——突破光学衍射极限 下载: 1319次

Superresolution Far-Field Fluorescence Bio-Imaging: Breaking the Diffraction Barrier
作者单位
中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
摘要
长期以来,远场光学荧光显微镜凭借其非接触、无损伤、可探测样品内部等优点,一直是生命科学中最常用的观测工具。但由于衍射极限的存在,使传统的宽场光学显微镜横向和纵向的分辨率分别仅约为230 nm和1000 nm。为了揭示细胞内分子尺度的动态和结构特征,提高光学显微镜分辨率成为生命科学发展的迫切要求,在远场荧光显微镜的基础上,科学家们已经发展出许多实用的提高分辨率甚至超越分辨率极限的成像技术。例如,采用横向结构光照明提高横向分辨率到约100 nm,利用纵向驻波干涉效应将纵向分辨率提高5~10倍。然而,直到在光学荧光显微镜中引入非线性效应后,衍射极限才被真正突破,如受激荧光损耗显微镜利用非线性效应实现了30~50 nm的三维分辨率。另外应用荧光分子之间能量转移共振原理以及单荧光分子定位技术也可以突破衍射极限,甚至可以将分子定位精度提高到几个纳米的量级。
Abstract
Far-field optical fluorescence microcopy has become an essential tool in life science for a long time largely owing to its unique capability to provide noninvasive, three-dimensional (3D) imaging inside cells. However, resolution of a traditional wide-field optical microscopy is limited to about 230 nm laterally and 1000 nm axially, due to the diffraction-limit of light. Resolution improvement is urgently demanded because molecule-scale dynamics and structures are to be revealed inside living cells in today’s life science. So far, many scientists have proposed a significant amount of novel methods in order to enhance resolution of far-field optical imaging. For example, lateral resolution of approximately 100 nm has been achieved by use of structured illumination, whereas the axial resolution has been enhanced 5~10-fold using a standing wave produced by two beams propagating in opposite directions. Nevertheless, diffraction barrier was not broken in these cases until nonlinear optical effects were introduced into optical fluorescence microscopy. As an example, the use of a nonlinear optical effect, namely, simulated emission depletion microscopy has resulted in a 3D resolution of 30~50 nm. Furthermore, the barrier of diffraction-limit can also be broken by novel technologies based on fluorescence resonance energy transfer and high-accuracy localization of fluorophores, by which molecules can be positioned with a resolution of several nanometers.
参考文献

[1] http://nano.cancer.gov/resource_center/tech_backgrounder.asp

[2] R. Hooke. Micrographia [M]. London: Royal Society of London, 1664

[3] . Abbe. Contributions to the theory of the microscope and that microscopic perception[J]. Arch. Microsc. Anat., 1873, 9: 413-468.

[4] . Attwood. New opportunities at soft-X-ray wavelengths[J]. Phys. Today, 1992, 45(8): 24-31.

[5] . V. Matz, A. F. Fradkov, Y. A. Labas et al.. Fluorescent proteins from nonbioluminescent Anthozoa species[J]. Nat. Biotechnol., 1999, 17(10): 969-973.

[6] . Knig, T. Krasieva, E. Bauer et al.. Cell damage by UVA radiation of a mercury microscopy lamp probed by autofluorescence modifications, cloning assay, and comet assay[J]. J. Biomed. Opt., 1996, 1: 217-222.

[7] L. Reimer. Scanning Electron Microscopy: Physics of Image Formation and Microanalysis [M]. Berlin: Springer-Verlag, 2000

[8] JintaoYang, Wendong Xu. Scanned-cantilever atomic force microscope with large scanning range [J]. Chin. Opt. Lett., 2006, 4(10): 580~582

[9] . Design of optical tracking for scanned cantilever atomic force microscope[J]. Chinese J. Lasers, 2006, 33(1): 26-30.

[10] . . Photon scanning tuneling microsope combined with atomic forece microscope[J]. Acta Optica Sinica, 2005, 25(8): 1099-1104.

[11] . Binnig, H. Rohrer, Ch. Gerber et al.. Surface studies by scanning tunneling microscopy[J]. Phys. Rev. Lett., 1982, 49: 56-60.

[12] . H. Synge. A suggested method for extending microscopic resolution into the ultra-microscopic region[J]. Philos. Mag., 1928, 6: 356.

[13] . Michaelis,C. Hettich, J. Mlynek et al.. Optical microscopy using a single- molecule light source[J]. Nature, 2000, 405: 325-327.

[14] . . Research of surface plasmon resonance on goldfilm using scanning near-field optical microscopy[J]. Acta Optica Sinica, 2006, 26(8): 1236-1239.

[15] . Detection angle and polarization dependences of the interferometric imaging with near-field scanning microscopy[J]. Acta Optica Sinica, 2006, 26(3): 425-429.

[16] . . Numerical analysis of interaction and perturbation between evanescent field and probe in optical field detection by SNOM[J], Acta Optica Sinica, 2005, 25(4): 465-469徐铁军,许吉英,王佳等. 扫描近场光学显微镜探针与光场相互作用的分析[J]. 光学学报, 2005, 25(4): 465-469.

[17] . Toomre, D. J. Manstein. Lighting up the cell surface with evanescent wave microscopy[J]. Trends Cell Biol., 2001, 11(7): 298-303.

[18] J. W. Goodman. Introduction to Fourier Optics [M]. Beijing: Science Press, 1976, 18~23J. W. 顾德门. 傅里叶光学导论[M],北京:科学出版社, 1976, 18~23

[19] . Garini, B. J. Vermolenand, I. T. Young. From micro to nano: recent advances in high-resolution microscopy[J]. Curr. Opin. Biotechnol., 2005, 16: 3-12.

[20] . Rayleigh. On the manufacture and theory of diffraction-gratings[J]. Philos. Mag., 1874, 47: 193.

[21] . Schrader, S. W. Hell, H. T. M. VanderVoort. Three-dimensional superresolution with a 4Pi-confocal microscope using image restoration[J]. J. Appl. Phys., 1998, 84: 4033-4042.

[22] . Nagorni, S. W. Hell. Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy I. Comparative study of concepts[J]. J. Opt. Soc. Am. A, 2001, 18(1): 36-48.

[23] . Nagorni, S. W. Hell. Coherent use of opposing lenses for axial resolution increase. II. Power and limitation of nonlinear image restoration[J]. J. Opt. Soc. Am. A, 2001, 18(1): 49-54.

[24] . Alexander, S. W. Hell. Fluorescence microscopy with super-resolved optical sections[J]. Trends Cell Biol., 2005, 15(4): 207-215.

[25] M. G. L. Gustafsson. Doubling the lateral resolution of wide-field fuorescence microscopy using structured illumination [C]. SPIE, 2000, 3919: 141~150

[26] S. W. Hell. Double-Scanning Confocal Microscope [P]. Europe Patent, 0491289, 1990

[27] . Heintzmann, T. M. Jovin, C. Cremer. Saturated patterned excitation microscopy: a concept for optical resolution improvement[J]. J. Opt. Soc. Am. A, 2002, 19(8): 1599-1609.

[28] . Westphal, L. Kastrup, S. W. Hell. Lateral resolution of 28 nm (λ/25) in far-field fluorescence microscopy[J]. Appl. Phys. B, 2003, 77: 377-380.

[29] . B. Sekar, A. Periasamy. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations[J]. J. Cell Biol., 2003, 160(5): 629-633.

[30] M. Dyba. STED-4Pi Microscopy [D]. Rupertus-Carola University of Heidelberg, 2004, 38~43

[31] . W. Hell, E. H. K. Stelzer. Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation[J]. Opt. Commun., 1992, 93: 277-282.

[32] M. Minsky. Microscopy Apparatus [P]. US Patent, 3013467, 1961

[33] . Ota, H. Fukuyama, Y. Ishihara et al.. The keratocyte network of human cornea: A three-dimensional study using confocal laser scanning fluorescence microscopy[J]. Cornea, 2000, 19(2): 185-193.

[34] N.A.M. Verhaegh, D. Asnaghi, H. N. W. Lekkerkerker. Transient gels in colloid-polymer mixtures studied with fluorescence confocal scanning laser microscopy [J]. Physica A, 1999, 264 (1-2): 64~74

[35] . R. Swedlow, K. Hu, P. D. Andrews et al.. Measuring tubulin content in toxoplasma gondii: A comparison of laser-scanning confocal and wide-field fluorescence microscopy[J]. PNAS, 2002, 99(4): 2014-2019.

[36] . Oheim, D. J. Michael, M. Geisbauer et al.. Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches[J]. Adv. Drug Deliv. Rev., 2006, 58: 788-808.

[37] T. Wilson. The role of the pinhole in confocal imaging system [C]. J. Pawley, Handbook of biological confocal microscopy, New York: Plenum Press, 1995, 167~168

[38] T. R. Corle, G. S. Kino. Confocal Scanning Optical Microscopy and Related Imaging Systems [M]. San Diego: Academic Press, 1996, 74

[39] J. Pawley. Fundamental limits in confocal microscopy [C]. J. Pawley, Handbook of biological confocal microscopy, New York: Plenum Press, 1995, 19~38

[40] . Glass, T. Dabbs. The experimental effect of detector size on confocal lateral resolution[J]. J. Microsc., 1991, 164: 153-158.

[41] . Wilson. Optical sectioning in confocal fluorescent microscopes[J]. J. Microsc., 1989, 154: 143-156.

[42] . R. Sandison, D. W. Piston, R. M. Williams et al.. Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes[J]. Appl. Opt., 1995, 34: 3576-3588.

[43] . J. Cox, C. J. R. Sheppard. Information capacity and resolution in an optical system[J]. J. Opt. Soc. Am. A, 1986, 3: 1152-1158.

[44] . E. Meyr, N. Otberg, W. Sterry et al.. In vivo confocal scanning laser microscopy: comparison of the reflectance and fluorescence mode by imaging human skin[J]. J. Biomed. Opt., 2006, 11(4): 044012.

[45] . Vivares, E. W. Kaler, A. M. Lenhoff. Polyhedral instability of glucose isomerase crystals as revealed by confocal scanning fluorescence microscopy[J]. Crys. Growth Des., 2007, 7(8): 1411-1415.

[46] . H. K. Stelzer, S. Lindek. Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy[J]. Opt. Commun., 1994, 111: 536-547.

[47] . Lindek, E. H. K. Stelzer. Optical transfer functions for confocal theta fluorescence microscopy[J]. J. Opt. Soc. Am. A, 1996, 13(3): 479-482.

[48] . Haeberl, H. Furukawa, K. Tenjimbayashi. Polarized confocal theta microscopy[J]. C. R. Physique, 2002, 3: 1445-1450.

[49] . Lindek, C. Cremer, E. H. K. Stelzer. Confocal theta fluorescence microscopy with annular apertures[J]. Appl. Opt., 1996, 35(1): 126-130.

[50] . Lindek, E. K. Stelzer. Single-lens theta microscopy - a new implementation of confocal theta microscopy[J]. J. Microsc., 1997, 188: 280-284.

[51] . Lindek, J. Swoger, E. H. K. Stelzer. Single-lens theta microscopy: resolution, efficiency and working distance[J]. J. Mod. Opt., 1999, 46: 843-858.

[52] . Geppert-Mayer. On elementary processes with two quantum steps[J]. Ann. Phys., 1931, 9: 273-294.

[53] . J. Bradley, M. H. R. Hutchinson, H. Koetser. Interactions of pico-second laser pulses with organic molecules. II. Two-photon absorption cross-sections[J]. Proc. R. Soc. Lond. A, 1972, 329: 105-119.

[54] . P. Schafer, H. Mller. Tunable dyering-laser[J]. Opt. Commun., 1971, 2: 407-409.

[55] J. A. Valdemanis, R. L. Fork. Design considerations for a femtosecond pulse laser: balancing self phase modulation, group velocity dispersion, saturable absorption, and saturable gain [J]. IEEE J. Quantum Electron., 1986, QE-22(1):112~118

[56] . E. Spence, P. N. Kean, W. Sibbert. 60-fsec pulse generation from a self-mode- locked Ti:sapphire laser[J]. Opt. Lett., 1991, 16: 42-44.

[57] W. Denk, J. Strickler, W. W. Webb. Two-Photon Laser Microscopy [P]. US Patent, 5034613, 1991

[58] . Denk, J. H. Strickler, W. W. Webb. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248: 73-76.

[59] . R. Zipfel, R. M. Williams, W. W. Webb. Nonlinear magic: Multiphoton microscopy in the biosciences[J]. Nat. Biotechnol., 2003, 21(11): 1369-1377.

[60] . Rubart. Two-photon microscopy of cells and tissue[J]. Circ. Res., 2004, 95: 1154-1166.

[61] . Gu, C. J. R. Sheppard. Comparison of three-dimensional imaging properties between two-photon and single-photon fluorescence microscopy[J]. J. Microsc., 1995, 177: 128-137.

[62] . Xu, W. Zipfel, J. B. Shear et al.. Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy[J]. PNAS, 1996, 93: 10763-10768.

[63] . R. Masters, P. T. C. So, E. Gratton. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin[J]. Biophys. J., 1997, 72: 2405-2412.

[64] . R. Masters, P. T. C. So. Multi-photon excitation microscopy and confocal microscopy imaging of in vivo human skin: a comparison[J]. Microsc. Microanal., 1999, 5: 28-289.

[65] . Diaspro, M. Robello. Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures[J]. J. Photochem. Photobio. B-Biol., 2000, 55(1): 1-8.

[66] . Svoboda, R. Yasuda. Principles of two-photon excitation microscopy and its applications to neuroscience[J]. Neuron, 2006, 50: 823-839.

[67] . Theer, M. T. Hasan, W. Denk. Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier[J]. Opt. Lett., 2003, 28(12): 1022-1024.

[68] . Theer, W. Denk. On the fundamental imaging-depth limit in two-photon microscopy[J]. J. Opt. Soc. Am. A, 2006, 23(12): 3139-3149.

[69] P. Theer. On the Fundamental Imaging-Depth Limit in Two-Photon Microscopy [D]. Ruperto-Carola University of Heidelberg, 2004, 30~40

[70] . . Construction of random-access scanning multiphoton fluorescence microscope system[J]. Acta Optica Sinica, 2006, 26(12): 1823-1828.

[71] . A. Molitoris, R. M. Sandova. Intravital multiphoton microscopy of dynamic renal process[J]. Am. J. Physiol. -Renal Physiol., 2005, 288: 1084-1089.

[72] . Oheim, E. Beaurepaire, E. Chaigneau et al.. Two-photon microscopy in brain tissue: parameters influencing the imaging depth[J]. J. Neurosci. Methods, 2001, 111(1): 29-37.

[73] . Bakalova. Ultra-fast biosensors and multi-photon microscopy in the future of brain studies[J]. Cell. Mol. Neurobio., 2007, 27(3): 359-365.

[74] Jianxin Chen, Shuangmu Zhuo, Tianshu Luo et al..Two-photon excited spectroscopies of ex vivo human skin endogenous species irradiated by femtosecond laser pulses [J].Chin. Opt. Lett., 2006, 4(10): 598~600

[75] . C. Malone, A. F. Hood, T. Conley et al.. Three-dimensional imaging of human skin and mucosa by two-photon laser scanning microscopy[J]. J. Cutan. Pathol., 2002, 29(8): 453-458.

[76] . Bousso, E. A. Robey. Dynamic behavior of T cells and thymocytes in lymphoid organs as revealed by two-photon microscopy[J]. Immunity, 2004, 21: 349-355.

[77] . K. Jain, L. L. Munn, D. Fukumura. Dissecting tumor pathophysiology using intravital microscopy[J]. Nat. Rev. Cancer, 2002, 2: 266-276.

[78] . H. Patterson, D. W. Piston. Photobleaching in two-photon excitation microscopy[J]. Biophys. J., 2000, 78: 2159-2162.

[79] . D. Higdon, P. Torok, T. Wilson. Imaging properties of high aperture multiphoton fluorescence scanning optical microscopes[J]. J. Microsc., 1999, 193: 127-141.

[80] . J. R. Sheppard, M. Gu. Image formation in two-photon fluorescence microscopy[J]. Optik, 1990, 86: 104-106.

[81] . Gryczynski, H. Malak, J. R. Lakowicz. Two-color two-photon excitation of Indole[J]. Biospectroscopy, 1997, 3: 97-101.

[82] . Lim, C. Saloma. Confocality condition in two-color excitation microscopy with two focused excitation beams[J]. Opt. Commun., 2002, 207: 121-130.

[83] . M. Blanca, C. Saloma. Two-color excitation fluorescence microscopy through highly scattering media[J]. Appl. Opt., 2001, 40(16): 2722-2729.

[84] J. Palero, W. Garcia, C. Saloma. Two-color (two-photon) excitation fluorescence with two confocal beams and a Raman shifter [J]. Opt. Commun., 2002, 211(1-6): 65~71

[85] . Lim, C. Saloma. Primary spherical aberration in two-color two-photon excitation fluorescence microscopy with two confocal excitation beams[J]. Appl. Opt., 2003, 42(17): 3398-3406.

[86] . O. Cambaliza, C. Saloma. Advantages of two-color excitation fluorescence microscopy with two confocal excitation beams[J]. Opt. Commun., 2000, 184: 25-35.

[87] . . Reduced deep-tissue image degradation in three-dimensional multiphoton microscopy with concentric two-color two-photon fluorescence excitation[J]. J. Opt. Soc. Am. B, 2008, 25(6): 976-982.

[88] . G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. J. Microsc., 2000, 198: 82-87.

[89] R. Heintzmann, C. Cremer. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating [C]. SPIE, 1998, 3568: 185~195

[90] . T. Frohn, H. F. Knapp, A. Stemmer. True optical resolution beyond the Rayleigh limit achieved by standing wave illumination[J]. PNAS, 2000, 97(13): 7232-7236.

[91] J. T. Frohn. Super-resolution Fluorescence Microscopy by Structured Light Illumination [D]. Swiss Federal Institute of Technology, 2000, 7~12

[92] . Juskaitis, T. Wilson, M. A. A. Neil et al.. Efficient real-time confocal microscopy with white light sources[J]. Nature, 1996, 383: 804-806.

[93] . A. A. Neil, T. Wilson, R. Juskaitis. Method of obtaining optical sectioning by using structured light in a conventional microscope[J]. Opt. Lett., 1997, 22: 1905-1907.

[94] . A. A. Neil, R. Juskaitis, T. Wilson. Real time 3D fluorescence microscopy by two beam interference illumination[J]. Opt. Commun., 1998, 153: 1-4.

[95] . A. A. Neil, T. Wilson, R. Juskaitis. A light efficient optically sectioning microscope[J]. J. Microsc., 1998, 189: 114-117.

[96] . Heintzmann. Saturated patterned excitation microscopy with two-dimensional excitation patterns[J]. Micron, 2003, 34: 283-291.

[97] . G. L. Gustafsson. Nonlinear structured-illumination microscopy wide-field fluorescence imaging with theoretically unlimited resolution[J]. PNAS, 2005, 102(37): 13081-13086.

[98] . E. Hnninen, S. W. Hell, A. J. Salo et al.. Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research[J]. Appl. Phys. Lett., 1995, 66: 698-700.

[99] F. Lanni, D. L. Taylor, A. S. Waggoner. Standing Wave Luminescence Microscopy [P]. US Patent, 4621911, 1986

[100] F. Lanni, D. L. Taylor, B. Bailey. Field Synthesis and Optical Subsectioning for Standing Wave Microscopy [P]. US Patent, 5394268, 1995

[101] F. Lanni, D. L. Taylor, B. Bailey. Field Synthesis and Optical Subsectioning for Standing Wave Microscopy (continuation in part) [P]. US Patent, 5394268, 1995

[102] B. Bailey, V. Krishnamurthi, D. L. Farkas et al.. Three-dimensional imaging of biological specimens with standing wave fluorescence microscopy [C]. SPIE, 1994, 2184: 208~213

[103] . Bailey, D. L. Farkas, D. L. Taylor et al.. Enhancement of axial resolution in fluorescence microscopy by standing wave excitation[J]. Nature, 1993, 366: 44-48.

[104] V. Krishnamurthi, B. Bailey, F. Lanni. Image processing in 3-D standing wave fluorescence microscopy [C].SPIE, 1994, 2655: 18~25

[105] M. G. L. Gustafsson, D. A. Agard, J. W. Sedat. 3D widefield microscopy with two objective lenses: experimental verification of improved axial resolution [C]. SPIE, 1996, 2655: 62~66

[106] . G. L Gustafsson, D. A. Agard, J. W. Sedat. I5M: 3D widefield light microscopy with better than 100 nm axial resolution[J]. J. Microsc., 1999, 195(1): 10-16.

[107] M. G. L. Gustafsson, D. A. Agard, J. W. Sedat. Method and Apparatus for Three-dimensional Microscopy with Enhanced Depth Resolution [P]. US Patent, 5671085, 1997

[108] M. G. L. Gustafsson, D. A. Agard, J. W. Sedat. Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses [C]. SPIE, 1995, 2412: 147

[109] . W. Hell, E. H. K. Stelzer. Properties of a 4Pi-confocal fluorescence microscope[J]. J. Opt. Soc. Am. A, 1992, 9: 2159-2166.

[110] . Nagorni, S. W. Hell. 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100-to 150-nm resolution[J]. J. Struct. Biol., 1998, 123: 236-247.

[111] . Schrader, K. Bahlmann, G. Giese et al.. 4Pi-confocal imaging in fixed biological specimens[J]. Biophys. J., 1998, 75: 1659-1668.

[112] . W. Hell, S. Lindek, C. Cremer et al.. Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution[J]. Appl. Phys. Lett., 1994, 64: 1335-1337.

[113] . Gugel, J. Bewersdorf, S. Jakobs et al.. Cooperative 4Pi excitation and detection yields 7-fold sharper optical sections in live cell microscopy[J]. Biophys. J., 2004, 87: 4146-4152.

[114] . Schrader, M. Kozubek, S. W. Hell et al.. Optical transfer functions of 4Pi confocal microscopes: theory and experiment[J]. Opt. Lett., 1997, 22: 436-438.

[115] . Martinez-Corral, M. T. Caballero, A. Pons et al.. Sidelobe decline in single-photon 4Pi microscopy by Toraldo rings[J]. Micron, 2003, 34: 319-325.

[116] . C. Lang, J. Engelhardt, S. W. Hell. 4Pi microscopy with linear fluorescence excitation[J]. Opt. Lett., 2007, 32(3): 259-261.

[117] . C. Lang, T. Müller, J. Engelhardt et al.. 4Pi microscopy of type A with 1-photon excitation in biological fluorescence imaging[J]. Opt. Express, 2007, 15(5): 2459-2467.

[118] . Gu, C. J. R. Sheppard. Three-dimensional transfer functions in 4Pi confocal microscopes[J]. J. Opt. Soc. Am. A, 1994, 11: 1619-1627.

[119] . W. Hell, S. Lindek, E. H. K. Stelzer. Enhancing the axial resolution in far-field light microscopy: two-photon 4Pi confocal fluorescence microscopy[J]. J. Mod. Opt., 1994, 41(4): 675-681.

[120] . H. Richardson. Bayesian-based iterative method of image restoration[J]. J. Opt. Soc. Am., 1972, 62: 55-59.

[121] . Midorikawa. Two-color two-photon 4Pi fluorescence microscopy[J]. Opt. Lett., 2004, 29(12): 1354-1356.

[122] . Egner, M. Schrader, S. W. Hell. Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton and 4Pi-microscopy[J]. Opt. Commun., 1998, 153: 211-217.

[123] . Bewersdorf, R. Pick, S. W. Hell. Multifocal multiphoton microscopy[J]. Opt. Lett., 1998, 23(9): 655-657.

[124] . Egner, S. Jakobs, S. W. Hell. Fast 100-nm resolution 3D-microscope reveals structural plasticity of mitochondriain live yeast[J]. PNAS, 2002, 99: 3370-3375.

[125] . Egner, S. Verrier, A. Goroshkov et al.. 4Pi-microscopy of the Golgi apparatus in live mammalian cells[J]. J. Struct. Biol., 2003, 147: 70-76.

[126] . W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy[J]. Opt. Lett., 1994, 19(11): 780-782.

[127] A. Einstein.On the quantum theory of radiation [J].Phys. J. 1917, 18: 121~128 (in German)

[128] . Kastrup, H. Blom, C. Eggeling et al.. Fluorescence fluctuation spectroscopy in subdiffraction focal volumes[J]. Phys. Rev. Lett., 2005, 94: 178104.

[129] . Westphal, S. W. Hell. Nanoscale resolution in the focal plane of an optical microscope[J]. Phys. Rev. Lett., 2005, 94: 143903.

[130] S. W. Hell. Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering [C]. J. R. Lakowicz, Fluorescence spectroscopy, New York: Plenum Press, 1997, 5: 361~422

[131] T. A. Klar. Progress in Stimulated Emission Depletion Microscopy [D]. Rupertus-Carola University of Heidelberg, 2001, 10~21

[132] . . Model design and parameter optimization of stimilated emission depletion fluorescence microscopy[J]. Acta Optica Sinica, 2006, 26(5): 720-725.

[133] . A. Klar, E. Engel, S. W. Hell. Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes[J]. Phys. Rev. E, 2001, 64: 066613.

[134] . A. Klar, S. Jakobs, M. Dyba et al.. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. PNAS, 2000, 97: 8206-8210.

[135] . Dyba, S. W. Hell. Focal spots of size of λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution[J]. Phys. Rev. Lett., 2002, 88: 163901.

[136] M. Dyba, J. Keller, S. W. Hell. Phase filter enhanced STED-4Pi fluorescence microscopy theory and experiment [J]. New J. Phys. 2005, 7: 134

[137] . I. Willig, S. O. Rizzoli, V. Westphal et al.. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 2006, 440(7086): 935-939.

[138] . J. Kittel, C. Wichmann, T. M. Rasse et al.. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release[J]. Science, 2006, 312(5776): 1051-1054.

[139] . Donnert, J. Keller, R. Medda et al.. Macromolecular-scale resolution in biological fluorescence microscopy[J]. PNAS, 2006, 103(31): 11440-11445.

[140] . I. Willig, J. Keller, M. Bossi et al.. STED microscopy resolves nanoparticle assemblies[J]. New J. Phys., 2006, 8: 106.

[141] . I. Willig, B. Harke, R. Medda et al.. STED microscopy with continous wave beams[J]. Nat. Methods, 2007, 4(11): 915-918.

[142] . Dyba, S. W. Hell. Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission[J]. Appl. Opt., 2003, 42(25): 1523-1529.

[143] . Eggeling, A. Volkmer, C. A. M. Seidel. Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy[J]. Chem.Phys.Chem.., 2005, 6: 791-804.

[144] . W. Hell, M. Kroug. Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit[J]. Appl. Phys. B, 1995, 60: 495-497.

[145] . Bretschneider, C. Eggeling, S. W. Hell. Breaking the diffraction barrier in fluorescence microscopy by optical shelving[J]. Phys. Rev. Lett., 2007, 98: 218103.

[146] . W. Hell. Towards the nanoscopy[J]. Nat. Biotechnol., 2003, 21(11): 1347-1355.

[147] . W. Hell. Far-field optical nanoscopy[J]. Science, 2007, 316: 1153-1158.

[148] . Keller, A. Schnle, S. W. Hell. Efficient fluorescence inhibition patterns for RESOLFT microscopy[J]. Opt. Express, 2007, 15(6): 3361-3371.

[149] . Sauer. Reversible molecular photoswitches: A key technology for nanoscience and fluorescence imaging[J]. PNAS, 2005, 102: 9433-9434.

[150] . M. Chudakov, V. V. Belousov, A. G. Zaraisky et al.. Kindling fluorescent proteins for precise in vivo photolabeling[J]. Nat. Biotechnol., 2003, 21: 191-194.

[151] . A. Lukyanov, A. F. Fradkov, N. G Gurskaya et al.. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog[J]. J. Biol. Chem., 2000, 275: 25879-25882.

[152] . Ando, H. Mizuno, A. Miyawaki. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting[J]. Science, 2004, 306: 1370-1373.

[153] . Habuchi, R. Ando, P. Dedecker et al.. From the cover: Reversible single-molecule photoswitching in the GFP-like fluorescent protein dronpa[J]. PNAS, 2005, 102: 9511-9516.

[154] . Hofmann, C. Eggeling, S. Jakobs et al.. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins[J]. PNAS, 2005, 102(49): 17565-17569.

[155] . W. Hell. Strategy for far-field optical imaging and writing without diffraction limit[J]. Phys. Lett. A, 2004, 326: 140-145.

[156] . Bossi, J. Flling, M. Dyba et al.. Breaking the diffraction resolution barrier in far field microscopy by molecular optical bistability[J]. New J. Phys., 2006, 8: 275.

[157] . W. Hell, S. Jakobs, L. Kastrup. Imaging and writing at the nanoscale with focused visible light through saturable optical transitions[J]. Appl. Phys. A, 2003, 77: 859-860.

[158] . S. White, R. J. Errington. Fluorescence techniques for drug delivery research: theory and practice[J]. Advanced Drug Delivery Reviews, 2005, 57: 17-42.

[159] D. Schachtman, W. H. Liu. GFP-based FRET microscopy in living plant cells [J], Trends in Plant Sci., 1999, 4(7): 287~291

[160] . Truong, M. Ikura. The use of FRET imaging microscopy to detect protein\|protein interactions and protein conformational changes in vivo[J]. Curr. Opin. Struct. Biol., 2001, 11: 573-578.

[161] H. Edelhoch, L. Brand, M. Wilchek. Fluorescence studies with tryptophyl peptides [J]. Isr. J. Chem. 1963, 1: 216~217

[162] T. Frster. Delocalized excitation and excitation transfer [C]. O. Sinanoglu, Modern Quantum Chemistry, New York: Academic Press, 1965, 3: 93~137

[163] . B. Sekar, A. Periasamy. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations[J]. J. Cell Biol., 2003, 160(5): 629-633.

[164] . A. Hink, T. Bisselin, A. J. Visser. Imaging protein-protein interactions in living cells[J]. Plant Mol. Biol., 2002, 50: 871-883.

[165] . W. Gordon, G. Berry, X. H. Liang et al.. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy[J]. Biophys. J., 1998, 74: 2702-2713.

[166] . Hoppe, K. Christensen, J. A. Swanson. Fluorescence resonance energy transfer-based stoichiometry in living cells[J]. Biophys. J., 2002, 83: 3652-3664.

[167] . Elangovan, H. Wallrabe, Y. Chen et al.. Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy[J]. Methods, 2003, 29: 58-73.

[168] . S. Kraynov, C. Chamberlain, G. M. Bokoch et al.. Localized Rac activation dynamics visualized in living cells[J]. Science, 2000, 290: 333-337.

[169] . . A high repetition rate picosecond streak camera for two-photon excited fluorescence lifetime microscopic imaging[J]. Acta Optica Sinica, 2006, 26(3): 373-378.

[170] . Suhling, P. M. W. French, D. Phillips. Time-resolved fluorescence microscopy[J]. Photochem. Photobiol. Sci., 2005, 4: 13-22.

[171] . Festy, S. M. Ameer-Beg, T. Ng et al.. Imaging proteins in vivo using fluorescence lifetime microscopy[J]. Mol. BioSyst., 2007, 3: 381-391.

[172] . Elangovan, R. N. Day, A. Periasamy. Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell[J]. J. Microsc., 2002, 205: 3-14.

[173] . Peter, S. M. Ameer-Beg. Imaging molecular interactions by multiphoton FLIM[J]. Biol. Cell, 2004, 96: 231-236.

[174] . J. Bacskai, J. Skoch, G. A. Hickey et al.. Fluorescence resonance energy transfer determinations using multiphoton fluorescence life time imaging microscopy to characterize amyloid-beta plaques[J]. J. Biomed. Opt., 2003, 8: 368-375.

[175] . Yasuda. Imaging spatiotemporal dynamics of neuronal signaling using fluorescence resonance energy transfer and fluorescence lifetime imaging microscopy[J]. Curr. Opin. Neurobiol., 2006, 16: 551-561.

[176] . N. Day, D. W. Piston. Spying on the hidden lives of proteins[J]. Nat. Biotechnol., 1999, 17: 425-426.

[177] . Gratton, S. Breusegem, J. Sutin et al.. Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods[J]. J. Biomed. Opt., 2003, 8: 381-390.

[178] W. Becker. Advanced Time-Correlated Single Photon Counting Techniques [M]. New York: Springer, 2005, 20~24

[179] . J. D. Grauw, H. C. Gerritsen. Multiple time-gate module for fluorescence lifetime imaging[J]. Appl. Spectrosc., 2001, 55: 670-678.

[180] K. Carlsson, J. Philip. Theoretical investigation of the signal-to-noise ratio for different fluorescence lifetime imaging techniques [C]. SPIE, 2002, 4622:70~78

[181] . A. Jares-Erijman, T. M. Jovin. FRET imaging[J]. Nat. Biotechnol., 2003, 21(11): 1387-1395.

[182] . K. Kenworthy, M. Edidin. Distribution of a glycosylphosphatidylinositol -anchored protein at the apical surface of MDCK cells examined at a resolution of <10  using imaging fluorescence resonance energy transfer[J]. J. Cell Biol., 1998, 142: 69-84.

[183] . K. M. Chan, R. M. Siegel, D. Zacharias et al.. Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein[J]. Cytometry, 2001, 44: 366-368.

[184] . E Dickinson, G. Bearman, S. Tille et al.. Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy[J]. Biotechniques, 2001, 31: 1272.

[185] . Zimmermann, J. Rietdorf, R. Pepperkok. Spectral imaging and its applications in live cell microscopy[J]. FEBS Lett., 2003, 546(1): 87-92.

[186] . L. Mattheyses, A. D. Hoppe, D. Axelrod. Polarized fluorescence resonance energy transfer microscopy[J]. Biophys. J., 2004, 87: 2787-2797.

[187] . S. Lidke, P. Nagy, B. G. Barisas et al.. Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET)[J]. Biochem. Soc. Trans., 2003, 31: 1020-1027.

[188] . Nagai, S. Yamada, T. Tominaga et al.. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins[J]. PANS, 2004, 101: 10554-10559.

[189] . V. Overton, K. J. Blumer. G-protein-coupled receptors function as oligomers in vivo[J]. Curr. Biol., 2000, 10: 341-344.

[190] . Sorkin, M. McClure, F. Huang et al.. Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy[J]. Curr. Biol., 2000, 10(21): 1395-1398.

[191] . G. H. Immink, T. W. J. Gadella, S. Ferrario et al.. Analysis of MADS box protein-protein interactions in living plant cells[J]. PNAS, 2002, 99: 2416-2421.

[192] . Nagai, M. Miyazaki, R. Aoki et al.. A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo[J]. Nat. Biotechnol., 2000, 18: 313-316.

[193] . W. Vanderklish, L. A. Krushel, B. H. Holst et al.. Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer[J]. PNAS, 2000, 97: 2253-2258.

[194] B. Ponsioen, J. Zhao, J. Riedl et al.. Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator [J] EMBO Rep., 2004, 5: 1176~1180

[195] . A.Rizzo. An improved cyan fluorescent protein variant useful for FRET[J]. Nat. Biotechnol., 2004, 22: 445-449.

[196] . J. Kremers, J. Goedhart, E. B. van Munster et al.. Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Frster radius[J]. Biochemistry, 2006, 45: 6570-6580.

[197] . C. Shaner, R. E. Campbell, P. A. Steinbach et al.. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein[J]. Nat. Biotechnol., 2004, 22: 1567-1572.

[198] . Nagai, K. Ibata, E. S. Park et al.. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications[J]. Nat. Biotechnol., 2002, 20: 87-90.

[199] . Yildiz, J. N. Forkey, S. A. McKinney et al.. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization[J]. Science, 2003, 300: 2061-2065.

[200] . K. Cheezum, W. F. Walker, W. H. Guilford. Quantitative comparison of algorithms for tracking single fluorescent particles[J]. Biophys. J., 2001, 81: 2378-2388.

[201] . E. Thompson, D. R. Larson, W. W. Webb. Precise nanometer localization analysis for individual fluorescent probes[J]. Biophys. J., 2002, 82: 2775-2783.

[202] . E. Moerner, L. Kador. Optical detection and spectroscopy of single molecules in a solid[J]. Phys. Rev. Lett., 1989, 62: 2535-2538.

[203] . Orrit, J. Bernard. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal[J]. Phys. Rev. Lett., 1990, 65: 2716-2719.

[204] . M. Dickson, D. J. Norris, Y. Tzeng et al.. Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels[J]. Science, 1986, 274: 966-969.

[205] . Yang, G. Luo, P. Karnchanaphanurach et al.. Protein conformational dynamics probed by single-molecule electron transfer[J]. Science, 2003, 302: 262-266.

[206] . S. Xie. Single-molecule spectroscopy and dynamics at room temperature[J]. Acc. Chem. Res., 1996, 29: 598-606.

[207] . P. Ambrose, P. M. Goodwin, J. H. Jett et al.. Single molecule fluorescence spectroscopy at ambient temperature[J]. Chem. Rev., 1999, 99: 2929-2956.

[208] . J. Peterman, H. Sosa, W. E. Moerner. Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors[J]. Annu. Rev. Phys. Chem., 2004, 55: 79-96.

[209] . S. Yeung. Dynamics single biomolecular in free solution[J]. Annu. Rev. Phys. Chem., 2004, 55: 97-126.

[210] . Barkai, Y. J. Jung, R. Silbey. Theory of single-molecule spectroscopy: beyond the ensemble average[J]. Annu. Rev. Phys. Chem., 2004, 55: 457-507.

[211] . Kilzer, M. Orrit. Single-molecule optics[J]. Annu. Rev. Phys. Chem., 2004, 55: 585-611.

[212] . E. Barbara. Single-molecule spectroscopy[J]. Acc. Chem. Res., 2005, 38: 503-610.

[213] . Betzig. Proposed method for molecular optical imaging[J]. Opt. Lett., 1985, 20(3): 237-239.

[214] . S. Churchman, Z. kten, R. S. Rock et al.. Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time[J]. PNAS, 2005, 102(5): 1419-1423.

[215] . S. Churchman, H. Flyvbjerg, J. A. Spudich. A non-Gaussian distribution quantifies distances measured with fluorescence localization techniques[J]. Biophys. J., 2006, 90: 668-671.

[216] . H. Qu, D. Wu, L. Mets et al.. Nanometer-localized multiple single-molecule fluorescence microscopy[J]. PNAS, 2004, 101(31): 11298-11303.

[217] . P. Gordon, T. Ha, P. R. Selvin. Single-molecule high-resolution imaging with photobleaching[J]. PNAS, 2004, 101(17): 6462-6465.

[218] . A. Lidke, B. Rieger, T. M. Jovin et al.. Superresolution by localization of quantum dots using blinking statistics[J]. Opt. Express, 2005, 13(18): 7052-7062.

[219] . Betzig, R. Sougrat, O. W. Lindwasser et al.. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313: 1642-1645.

[220] G. H. Patterson, E. Betzig, J. Lippincott-Schwartz1 et al.. Developing photoactivated location microscopy (PALM), Biomedical imaging: from nano to macro [C]. 4th IEEE International Symposium, 2007, 940~943

[221] . Chen, H. E. Hamm. PALM reading: Seeing the future of cell biology at higher resolution[J]. Developmental Cell, 2006, 11: 438-439.

[222] . T. Hess, T. P. K. Girirajan, M. D. Mason. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophys. J., 2006, 91: 4258-4272.

[223] . Ando, H. Hama, M. Yamamoto-Hino et al.. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein[J]. PNAS, 2002, 99(20): 12651-12656.

[224] . H. Patterson, J. Lippincott-Schwartz. A photoactivatable GFP for selective photolabeling of proteins and cells[J]. Science, 2002, 297: 1873-1877.

[225] . Wiedenmann, S. Ivanchenko, F. Oswald et al.. EosFP, a fluorescent marker protein with UV- inducible green-to-red fluorescence conversion[J]. PNAS, 2004, 101: 15905-15910.

[226] . A. Lukyanov, D. M. Chudakov, S. Lukyanov et al.. Photoactivatable fluorescent proteins[J]. Nat. Rev. Mol. Cell Biol., 2005, 6: 885-891.

[227] . E. Moerner. Single-molecule optical spectroscopy of autofluorescent proteins[J]. J. Chem. Phys., 2002, 117(24): 10925-10937.

[228] R. Rigler, M. Orrit, T. Basché. Single molecule spectroscopy [C]. Nobel conference lectures, Berlin: Spirnger, 2001

[229] . J. Rust, M. Bates, X. W. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy(STORM)[J]. Nat. Methods, 2006, 3(10): 793-795.

[230] . E. Moerner. New directions in single-molecule imaging and analysis[J]. PNAS, 2007, 104(311): 12596-12602.

毛峥乐, 王琛, 程亚. 超分辨远场生物荧光成像——突破光学衍射极限[J]. 中国激光, 2008, 35(9): 1283. Mao Zhengle, Wang Chen, Cheng Ya. Superresolution Far-Field Fluorescence Bio-Imaging: Breaking the Diffraction Barrier[J]. Chinese Journal of Lasers, 2008, 35(9): 1283.

本文已被 15 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!