光学学报, 2017, 37 (2): 0227002, 网络出版: 2017-02-13   

高效短种子量子密钥分配保密放大方案设计

Scheme Design of Highly Efficient Privacy Amplification with Fewer Random Seeds in Quantum Key Distribution
作者单位
1 解放军信息工程大学三院, 河南 郑州 450001
2 信息保障技术重点实验室, 北京 100072
摘要
针对目前保密放大方案存在的随机种子使用量大的问题,提出了一种基于模块化广义Trevisan随机提取器结构的量子密钥分配(QKD)保密放大的设计方案,并借助量子边信息分析理论,给出了该方案的安全性证明。结果表明,该方案不仅能够抵抗量子攻击,而且能有效节约随机种子,实现可扩展的高效保密放大。
Abstract
In consideration of the problem of the large usage of random seeds in the current privacy amplification schemes, one design scheme of privacy amplification in quantum key distribution (QKD) based on modular and generalized Trevisan’s randomness extractor construction is proposed, and the confirmation of its security with the help of quantum side information analysis theory is presented. The results indicate that such a scheme not only resists against quantum attacks but also effectively reduces the usage of random seeds to ensure an efficient and malleable privacy amplification.
参考文献

[1] Shannon C E. Communication theory of secrecy systems[J]. Bell System Technical Journal, 1949, 28(4): 656-715.

[2] Bennet C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing[J]. Theoretical Computer Science, 2014, 560(1): 7-11.

[3] Li M, Patcharapong T, Zhang C M, et al. Efficient error estimation in quantum key distribution[J]. Chinese Physics B, 2015, 24(1): 010302.

[4] 窦 磊, 郭大波, 王晓凯. 连续变量量子密钥分发多维数据协调算法优化[J]. 光学学报, 2016, 36(9): 0927001.

    Dou Lei, Guo Dabo, Wang Xiaokai. Optimizing multidimensional reconciliation algorithm for continuous-variable quantum key distribution[J]. Acta Optica Sinica, 2016, 36(9): 0927001.

[5] Zhang C M, Li M, Huang J Z, et al. Fast implementation of length-adaptive privacy amplification in quantum key distribution[J]. Chinese Physics B, 2014, 23(9): 090310.

[6] Tan Y G, Liu Q. Measurement-device-independent quantum key distribution with two-way local operations and classical communications[J]. Chinese Physics Letters, 2016, 33(9): 090303.

[7] 李 默, 张春梅, 银振强, 等. 量子密钥分配处理概述[J]. 密码学报, 2015, 2(2): 113-121.

    Li Mo, Zhang Chunmei, Yin Zhenqiang, et al. An overview on the post-processing procedure in quantum key distribution[J]. Journal of Cryptologic Research, 2015, 2(2): 113-121.

[8] Yuen H P. Security issues associated with error correction and privacy amplification in quantum key distribution[EB/OL]. (2014-11-10)[2016-08-14]. https: ∥arxiv.org/pdf/1411.2310.pdf.

[9] Carter J L, Wegman M N. Universal classes of hash functions[J]. Journal of Computer & System Sciences, 1979, 18(2): 143-154.

[10] Hayashi M, Tsurumaru T. More efficient privacy amplification with less random seeds via dual universal Hash function[J]. IEEE Transactions on Information Theory, 2016, 62(4): 2213-2232.

[11] Trevisan L. Extractors and pseudorandom generators[J]. Journal of the ACM, 2001, 48(4): 860-879.

[12] De A, Portmann C, Vidick T, et al. Trevisan’s extractor in the presence of quantum side information[J]. SIAM Journal on Computing, 2012, 41(4): 915-940.

[13] Berta M, Fawzi O, Scholz V B. Quantum-proof randomness extractors via operator space theory[EB/OL]. (2014-09-11)[2016-08-14]. https: ∥arxiv.org/pdf/1409.3563v2.pdf.

[14] Bennett C H, Brassard G, Robert J M. Privacyamplification by public discussion[J]. SIAM Journal on Computing, 1988, 17(2): 210-229.

[15] Bennett C H, Brassard G, Crepeau C, et al. Generalized privacy amplification[C]. Proceedings of IEEE International Symposium on Information Theory, 1995, 41(6): 1915-1923.

[16] Miller C A, Shi Y. Robust protocolsfor securely expanding randomness and distributing keys using untrusted quantum devices[EB/OL]. (2016-07-29)[2016-08-14]. https: ∥arxiv.org/pdf/1402.0489v4.pdf.

[17] Krawczyk H. LFSR-based hashing and authentication[C]. CRYPTO '94 Proceedings of the 14th Annual International Cryptology Conference on Advances in Cryptology, 1994, 839: 129-139.

[18] Fung C H F, Ma X, Chau H F, et al. Quantum key distribution with delayed privacy amplification and its application to security proof of a two-way deterministic protocol[J]. Physical Review A, 2012, 85(3): 032308.

[19] Nisan N, Wigderson A. Hardness vs randomness[J]. Journal of Computer & System Sciences, 1994, 49(2): 149-167.

[20] Renner R. Security of quantum key distribution[J]. International Journal of Quantum Information, 2008, 6(1): 1-127.

[21] Ran R, Reingold O, Vadhan S. Extracting all the randomness and reducing the error in Trevisan’s extractors[J]. Journal of Computer and System Sciences, 2002, 65(1): 97-128.

[22] Mauerer W, Portmann C, Scholz V B. A modular framework for randomness extraction based on Trevisan’s construction[EB/OL]. (2012-12-03)[2016-08-14]. https: ∥arxiv.org/pdf/1212.0520v1.pdf.

[23] Konig R T, Terhal B M. The bounded-storage model in the presence of a quantum adversary[J]. IEEE Transactions on Information Theory, 2008, 54(2): 749-762.

[24] Tomamichel M, Schaffner C, Smith A, et al. Leftover hashing against quantum side information[J]. IEEE Transactions on Information Theory, 2011, 57(8): 5524-5535.

[25] Ma X, Xu F, Xu H, et al. Postprocessing for quantum random number generators: Entropy evaluation and randomness extraction[J]. Physical Review A, 2013, 87(6): 062327.

刘翼鹏, 郭建胜, 崔竞一. 高效短种子量子密钥分配保密放大方案设计[J]. 光学学报, 2017, 37(2): 0227002. Liu Yipeng, Guo Jiansheng, Cui Jingyi. Scheme Design of Highly Efficient Privacy Amplification with Fewer Random Seeds in Quantum Key Distribution[J]. Acta Optica Sinica, 2017, 37(2): 0227002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!