发光学报, 2018, 39 (7): 1036, 网络出版: 2018-08-30  

Woodpile结构三维光子晶体中的四端口通道下载滤波器

A Four-port Channel Drop Filter in The Three-dimensional Woodpile Photonic Crystal
作者单位
1 山西大同大学 固体物理研究所, 山西 大同 037009
2 微结构电磁功能材料省市共建山西省重点实验室, 山西 大同 037009
3 新型微结构功能材料山西省高等学校重点实验室, 山西 大同 037009
4 太原理工大学 材料科学与工程学院, 山西 太原 030024
5 北京化工大学 理学院, 北京 100029
摘要
基于三维光子晶体空间完全带隙的特性, 本文在实验上构建了一种由非共面的两个波导和一个立体微腔组成的四端口通道下载滤波器。讨论了球体、正方体、长方体微腔滤波器的选频特性, 以及连续旋转长方体微腔时, 其输出频率的变化。研究结果表明, 无论是对称型还是非对称型微腔, 都可以较好地实现选频。提高微腔的不对称性, 共振输出频率随之发生移动, 说明改变微腔的对称性, 可以有效调节滤波器的选频特性。连续旋转非对称型长方体微腔, 输出频率会随之发生明显的移动,如果引入有效调节机制, 可以产生连续调节输出频率的效果。该研究结果给多端口选择性输出空间滤波器的设计提供了新的思路, 为光学器件集成化的设计提供了重要的理论参考。
Abstract
A compact non-planar four-port channel drop filter was developed experimentally in the three-dimensional Woodpile photonic crystal with a complete band gap. It consisted of two waveguides separated by a defect in different layers of the photonic crystal. The property of frequency selecting of channel drop filter with sphere cavity, cube cavity, cuboids cavity and cuboids cavity rotating was discussed experimentally. The results show that the property of frequency selecting of channel drop filter can be realized whatever the cavity is symmetric or non-symmetric in the Woodpile structure. It indicated the output frequency can be effectually regulated by changing the symmetric of non-planar cavity. For a non-symmetric cavity, the output frequency can be adjusted as the rotation of the cavity. If the effective regulation mechanism is introduced, the output frequency can be adjusted continuously. The results provide a new idea and an important theoretical reference for the design of optical integrated devices.
参考文献

[1] JOHN S. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett., 1987, 58(23):2486-2489.

[2] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics [J]. Phys. Rev. Lett., 1987, 58(20):2059-2062.

[3] SUBRAMANIA G, LIN S Y, WENDT J R, et al.. Tuning the microcavity resonant wavelength in a two-dimensional photonic crystal by modifying the cavity geometry [J]. Appl. Phys. Lett., 2003, 83:4491-4494.

[4] 毛强明, 李长红, 夏铮. 矩形孔光子晶体波导慢光特性 [J]. 光子学报, 2016, 45(2):0223002.

    MAO Q M, LI C H, XIA Z. Investigation on slow light properties in rctangular holes photonic crystal waveguide [J]. Acta Photon. Sinica, 2016, 45(2):0223002. (in Chinese)

[5] SELL C, CHRISTENSEN C, MUEHLMEIER J, et al.. Waveguide networks in three-dimensional layer-by-layer photonic crystals [J]. Appl. Phys. Lett., 2004, 84:4605-4607.

[6] KOHLI P, CHATTERTON J, STIELER D, et al.. Fine tuning resonant frequencies for a single cavity defect in three-dimensional layer-by-layer photonic crystal [J]. Opt. Express, 2008, 16(24):19844-19849.

[7] KIM S, PARK I., LIM H, et al.. Highly efficient photonic crystal-based multi-channel drop filters of three-port system with reflection feedback [J]. Opt. Express, 2004, 12(22):5518-5525.

[8] 陈琦, 孔德鹏, 苗竟, 等. 太赫兹聚合物光子晶体光纤关键制备工艺研究 [J]. 光子学报, 2017, 46(4):0406001.

    CHEN Q, KONG D P, MIAO J, et al.. Key fabrication technology of polymer photonic crystal fiber for terahertz transmission [J]. Acta Photon. Sinica, 2017, 46(4):0406001. (in Chinese)

[9] 刘艳红, 董丽娟, 刘丽想, 等. 基于各向异性光子晶体带隙的窄带带通角度滤波器 [J]. 光学学报, 2013, 33(8):0823001.

    LIU Y H, DONG L J, LIU L X, et al.. Narrow bandpass angular filter based on anisotropic photonic band gap [J]. Acta Opt. Sinica, 2013, 33(8):0823001. (in Chinese)

[10] 梁冠全, 韩鹏, 汪河洲. 空间与频率双性能的薄膜光学滤波器 [J]. 物理学报, 2004, 53(7):2197-2200.

    LIANG G Q, HAN P, WANG H Z. Thin-film optical filters with both functions of incident angle and frequency [J]. Acta Phys. Sinica, 2004, 53(7):2197-2200. (in Chinese)

[11] 陈卫东, 董昕宇, 陈颖, 等. 对称双缺陷光子晶体的可调谐滤波特性分析 [J]. 物理学报, 2014, 63(15):154207.

    CHEN W D, DONG X Y, CHEN Y, et al.. Analysis of the tunable filtering properties of a photonic crystal with symmetric dual defects [J]. Acta Phys. Sinica, 2014, 63(15):154207. (in Chinese)

[12] NODA S, CHUTINAN M, IMADA M. Trapping and emission of photons by a single defect in a photonic bandgap structure [J]. Nature, 2000, 407:608-610.

[13] JIANG C, REN H, WANG J, et al.. Photonic crystal channel drop filter with a wavelength- selective reflection micro- cavity [J]. Opt. Express, 2006, 14(6):2446.

[14] DROUARD E, HATTORI H, GRILLET C, et al.. Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section [J]. Opt. Express, 2005, 13(8):3037-3048.

[15] QIU M, JASKORZYNSKA B. Design of a channel drop filter in a two-dimensional triangular photonic crystal [J]. Appl. Phys. Lett., 2003, 83(6):1074-1076.

[16] TAKANO H, AKAHANE Y, ASANO T, et al.. In-plane-type channel drop filter in a two-dimensional photonic crystal slab [J]. Appl. Phys. Lett., 2004, 84(13):2226-2228.

[17] OKANO M, KAKO S, NODA S. Coupling between a point-defect cavity and a line-defect waveguide in three-dimensional photonic crystal [J]. Phys. Rev. B, 2003, 68:235110.

[18] BAYINDIR M, OZBAY E. Dropping of electromagnetic waves through localized modes in three-dimensional photonic band gap structures [J]. Appl. Phys. Lett., 2002, 81(24):4514-4516.

[19] KOHLI P, CHRISTENSEN C, MUEHLMEIER J. Add-drop filters in three-dimensional layer-by-layer photonic crystals using waveguides and resonant cavities [J]. Appl. Phys. Lett., 2006, 89(23):231103-1-3.

[20] ZHIFANG F, DANDAN Z, YASIN AKHTAR RAJA M. Channel drop filters in Woodpile-heterostructures [J]. J. Appl. Phys., 2014, 115(8):813.

[21] STIELER D, BARSIC A, BISWAS R, et al.. A planar four-port channel drop filter in the three-dimensional Woodpile photonic crystal [J]. Opt. Express, 2009, 17(8):6128.

[22] OZBAY E, ABEYTA A, TUTTLE G, et al.. Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods [J]. Phys. Rev. B, 1994, 50(3):1945-1948.

李文宇, 石泰峡, 张一新, 申艳艳, 冯志芳, 刘艳红, 石云龙, 董丽娟. Woodpile结构三维光子晶体中的四端口通道下载滤波器[J]. 发光学报, 2018, 39(7): 1036. LI Wen-yu, SHI Tai-xia, ZHANG Yi-xin, SHEN Yan-yan, FENG Zhi-fang, LIU Yan-hong, SHI Yun-long, DONG Li-juan. A Four-port Channel Drop Filter in The Three-dimensional Woodpile Photonic Crystal[J]. Chinese Journal of Luminescence, 2018, 39(7): 1036.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!