强激光与粒子束, 2019, 31 (6): 063203, 网络出版: 2019-06-17  

显示屏表面空气式静电放电实验特性

Experimental characteristics of surface discharging for air electrostatic discharge on display
作者单位
1 武汉理工大学 物理系, 武汉 430070
2 ESDEMC 科技有限公司, 罗拉 65401
摘要
显示屏是人机交互的重要部件, 当人体静电放电发生在显示屏表面时, 有可能导致软硬故障。为了研究显示屏空气式静电放电实验特性, 通过一个自制的装置对显示屏空气式静电放电电流和通过显示屏的位移电流进行了实验测量。研究发现: 放电电流峰值随接近速度的增加而增加, 上升时间随接近速度的增加而减小。在±10~±12 kV电压范围, 受电弧长度的影响, 上升时间增大, 电流峰值变小。随着测量点与放电点之间距离的增大, 位移电流波形峰值减小、上升时间增大, 正极性放电峰值更大且扩散范围更广, 而负极性放电上升时间增大更加明显。由位移电流波形及其分布可以计算出电荷密度。电荷密度随距离放电位置距离的增大而减小。与正极性相比, 尽管负极性放电电流峰值较低, 但电荷密度较高, 说明负极性放电具有造成更高等级损伤风险的危害。
Abstract
The display is an important part of human-computer interaction. When the human body electrostatic discharge occurs on the surface of the display, it may lead to hardware and software faults. In order to study the experimental characteristics of air electrostatic discharge on display, the air electrostatic discharge current and the displacement current through the display screen were measured by a self-made device. It is found that the peak value of discharge current increases with the increase of approaching velocity, and the rising time decreases with the increase of approaching velocity. In the voltage range of ±10-±12 kV, the rise time increases and the peak current decreases under the influence of arc length. With the increase of the distance between the measurement point and the discharge point, the peak value of the displacement current waveform decreases and the rising time increases. The peak value of the positive polarity discharge is larger and the diffusion range is wider, while the rising time of the negative polarity discharge is more obvious. The charge density can be calculated from the displacement current waveform and its distribution. The charge density decreases with the distance of discharge position increasing. Although the peak value of negative polarity discharge current is lower than that of positive polarity, the charge density is higher.This indicates that the negative polarity discharge has a higher damage risk.
参考文献

[1] Tsai J M, Chuang Y J, Liao S S, et al. Improve ESD protection on mobile phone with capacitive touch screen[C]//Cross Strait Quad-regional Radio Science & Wireless Technology Conference. 2011: 295-298.

[2] Talebzadeh A, Gan Y, Kim K H, et al. Sparkless electrostatic discharge (ESD) on display screens[C]//2015 IEEE International Symposium on Electromagnetic Compatibility. 2015: 1284-1289.

[3] Shinde S, Zhou J, Marathe S, et al. ESD to the display inducing currents measured using a substitution PC board[C]//IEEE International Symposium on Electromagnetic Compatibility. 2016: 707-712.

[4] Zhou J, Shinde S, Guo Y, et al. IEC 61000-4-2 ESD test in display down configuration for cell phones[C]//IEEE International Symposium on Electromagnetic Compatibility. 2016: 713-718.

[5] Ko J, Kim K, Kim H. System-level ESD immunity of mobile display driver IC to hard and soft failure[J]. Electrical & Electronic Engineering, 2012, 13(1): 329-335.

[6] Hsu C T, Tseng J C, Chen Y L, et al. Board-level ESD of driver ICs on LCD panels[C]//IEEE International Reliability Physics Symposium. 2009, 9(1): 59-64.

[7] Jiang Xiao, Pommerenke, D, Fan Zhou, et al. Model for ESD LCD upset of a portable product[C]//2010 IEEE International Symposium on Electromagnetic Compatibility. 2010: 354-358.

[8] Kim K Y, Kim Y. Systematic analysis methodology for mobile phone’s electrostatic discharge soft failures[J]. IEEE Trans Electromagnetic Compatibility, 2011, 53(3): 611-618.

[9] Lingayat T D. Prediction of electrostatic discharge soft failure issue in case of a six layer PCB of a tablet using SIwave tool[C]//IEEE International Conference on Recent Trends in Electronics. 2017: 1361-1366.

[10] Murooka Y, Takada T, Hiddaka K. Nanosecond surface discharge and charge density evaluation Part I: review and experiments[J]. IEEE Electrical Insulation Magazine, 2001, 17(2): 6-16.

[11] Mueller L, Feser K, Pfendtner R, et al. Experimental investigation of discharges for charged plastic or plastic-coated materials[C]//Conference on Electrical Insulation & Dielectric Phenomena. 2001: 110-113.

[12] 贺其元, 刘尚合, 陈京平, 等.对空气式静电放电的研究[J].高电压技术, 2006, 32(7): 72-75.(He Qiyuan, Liu Shanghe, Chen Jingping, et al. Research on air electrostatic discharge. High Voltage Engineering, 2006, 32(7): 72-75)

[13] 原青云, 张希军, 刘尚合, 等.影响空气式静电放电特性的相关因素分析[J].高电压技术, 2010, 36(10): 2500-2506.(Yuan Qingyun, Zhang Xijun, Liu Shanghe, et al. Analysis of relevant factors influencing the characteristics of air electrostatic discharge. High Voltage Engineering, 2010, 36(10): 2500-2506)

[14] Murooka Y, Koyama S. Nanosecond surface discharge study by using Dust figure techniques[J]. Journal of Applied Physics, 1973, 44(4): 1576-1580.

[15] Pedersen P O. Die Ausbreitungs Geschwindigkeit der Lichtenbergschen Figuren und ihre Verwendung zur Messung sehr kurzer Zeiten[J]. Annalen der Physik, 2006, 374(19): 205-230.

[16] 贺其元, 刘尚合, 徐晓英, 等.接近速度对空气静电放电特性的影响[J].强激光与粒子束, 2007, 19(3): 524-528.(He Qiyuan, Liu Shanghe, Xu Xiaoying, et al. Effects of approach velocity on air electrostatic discharge characteristics. High Power Laser and Particle Beams, 2007, 19(3): 524-528)

徐晓英, 舒晓榕, 刘鹏宇, 甘瑛洁, 张成铭. 显示屏表面空气式静电放电实验特性[J]. 强激光与粒子束, 2019, 31(6): 063203. Xu Xiaoying, Shu Xiaorong, Liu Pengyu, Gan Yingjie, Zhang Chengming. Experimental characteristics of surface discharging for air electrostatic discharge on display[J]. High Power Laser and Particle Beams, 2019, 31(6): 063203.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!