激光生物学报, 2016, 25 (6): 523, 网络出版: 2017-01-23  

基于功能性近红外光谱技术的双人同步交互测量研究

Hyper-scan Interacting Brains with Functional Near-Infrared Spectroscopy
作者单位
1 华南师范大学 a.心理学院
2 华南师范大学 b.华南师范大学华南先进光电子研究院, 广东 广州 510631
摘要
多人同步交互式记录是认知神经科学的一种新的研究范式, 它可以揭示两个或多个个体的大脑间在社交情境下神经活动的耦合。这一目标仅靠单个大脑活动的记录与测量是无法实现的。功能性近红外光谱成像在进行多人同步交互记录研究中有独特的优势。该方面的研究已经涵盖了社会认知神经科学的多个领域。本研究使用近红外光谱成像对社交情境下自我表露的双人大脑前额皮层的活动进行交互式测量, 并使用小波相关来分析双人大脑互动时的神经同步性。研究结果表明在进行社交对话时, 被试对的大脑间左侧额中回、右侧眶额皮层和右侧额下回下部的活动同步性显著增强。共情能力与社交情境下脑间同步性的强度呈正相关, 这种关系主要体现在右侧额下回。本研究支持了采用近红外光谱成像技术研究多人同步交互记录大脑间神经耦合的可行性和有效性。
Abstract
As a new research paradigm, hyperscanning is emerging from traditional methods of cognitive neuroscience. By simultaneously measure two or more individuals’ brain activities, hyperscanning can reveal the inter-brain synchronizations during the social interactions. Functional near-infrared spectroscopy (fNIRS), as a cost-effective, non-invasive and ecological optical brain imaging technique, has unique advantage in hyperscanning. By now, the fNIRS-based-hyperscanning has been used on various social interaction fields. In the present study, we applied fNIRS to hyper-scan two brains in the social context of self-disclosure. Wavelete coherence was used to analyze the inter-brain synchronization. Result showed that during the social dialogue, the coherences of two participants’ brain activities increase in the left middle frontal gyrus, the right orbitofrontal cortex and the right inferior frontal gyrus. Participants’ capacities of empathy were significantly positively correlated with the strength of brain inter-brain synchronization in the right inferior frontal gyrus. The present study provided evidence to support the feasibility of fNIRS for hyperscanning.
参考文献

[1] CHATEL-GOLDMAN J, SCHWARTZ J C, JUTTEN C, et al. Non-local mind from the perspective of social cognition[J]. Frontiers in Human Neuroscience, 2013, 7: 17.

[2] HASSON U, GHAZANFAR, A A. GALANTUCCI B, et al. Brain-to-brain coupling: a mechanism for creating and sharing a social world[J]. Trends in Cognitive Sciences, 2012, 16(2): 114-121.

[3] SCHOLKMANN F, HOLPER L, WOLF U, et al. A new methodical approach in neuroscience: assessing inter-personal brain coupling using functional near-infrared imaging (fNIRI) hyperscanning[J]. Frontiers in Human Neuroscience, 2013, 7: 813.

[4] BERNHARDT B C, SINGER T. The neural basis of empathy[J]. Annual Review of Neuroscience, 2012, 35: 1-23.

[5] SCHILBACH L, TIMMERMANS B, REDDY V, et al. Toward a second-person neuroscience[J]. Behavioral and Brain Sciences, 2013, 36(4): 393-414.

[6] 柳昀哲, 张丹丹, 罗跃嘉. 婴儿社会和情绪脑机制的早期发展[J]. 科学通报, 2013, 58(9): 753-761.

    LIU Yunzhe, ZHANG Dandan, LUO Yuejia. Early development of the social and emotional brain in infancy[J]. Chin Sci Bull, 2013, 58(9): 753-761.

[7] 申荷永, 李新格, 朱绘霖. 自闭谱系障碍的大脑功能性连接研究进展[J]. 华南师范大学学报(自然科学版), 2014, 46(6): 10-15.

    SHEN Heyon, LI Xinge, ZHU Huilin. Research progress of functional connectivity of autism spectrum disorder[J]. Journal of South China normal university(natural science edition), 2014, 46(6): 10-15.

[8] FUNANE T, KIGUCHI M, ATSUMORI H, et al. Synchronous activity of two people’s prefrontal cortices during a cooperative task measured by simultaneous near-infrared spectroscopy[J]. Journal of Biomedical Optics, 2011, 16(7): 77011.

[9] CUI X, BRYANT D M, REISS A L. NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation[J]. Neuroimage, 2012, 59(3): 2430-2437.

[10] CHENG X, LI X, HU Y. Synchronous brain activity during cooperative exchange depends on gender of partner: A fNIRS‐based hyperscanning study[J]. Human Brain Mapping, 2015, 36(6): 2039-2048.

[11] HOLPER L, SCHOLKMANN F, WOLF M. Between-brain connectivity during imitation measured by fNIRS[J]. Neuroimage, 2012, 63(1): 212-222.

[12] HOLPER L, MUEHLEMANN T, SCHOLKMANN F, et al. Correction: testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional near-infrared spectroscopy (fNIRS)[J]. Journal of Neuroengineering and Rehabilitation, 2013, 10(1): 16.

[13] JIANG J, DAI B, PENG D, et al. Neural synchronization during face-to-face communication[J]. J Neurosci, 2012, 32(45): 16064-16069.

[14] DUAN L, LIU W J, DAI R N, et al. Cross-brain neurofeedback: scientific concept and experimental platform [J]. PloS one, 2013, 5(8): e64590.

[15] CHOW C M, RUHL H, BUHRMESTER D. The mediating role of interpersonal competence between adolescents’ empathy and friendship quality: A dyadic approach[J]. Journal of adolescence, 2013, 36(1): 191-200.

[16] 刘可愚, 宋新涛, 李红政, 等. 不同心理素质水平军人对恐惧情绪的原因调节和反应调节特点[J]. 第三军医大学学报, 2012, 34(3): 244-249.

    LIU Keyu, SONG Xintao, LI Hongzheng, et al. Characteristics of antecedent focused regulation and response focused regulation in military persons with different levels of mental quality during fear emotion processes[J]. J Third Mil Med Univ, 2012, 34(3): 244-249.

[17] DAVIS M H. A multidimensional approach to individual differences in empathy[J]. JSAS Catalog of Selected Documents in Psychology, 1980, 10: 85.

[18] 张凤凤, 董毅, 汪凯, 等. 中文版人际反应指针量表 (IRI-C) 的信度及效度研究[J]. 中国临床心理学杂志, 2010, 18(2): 155-157.

    ZHANG Fengfeng, DONG Yi, WANG Kai, et al. Reliability and validity of the chinese version of the interpersonal reactivity index-C[J]. Chinese Journal of Clinical Psychology, 2010, 18(2): 155-157.

[19] TORRENCE C, COMPO G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1): 61-78.

[20] CHANG C, GLOVER G H. Time-frequency dynamics of resting-state brain connectivity measured with fMRI[J]. Neuroimage, 2010, 50(1): 81-98.

[21] GRINSTED A, MOORE J C, JEVREJEVA S. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Processes in Geophysics, 2004, 11(5/6): 561-566.

[22] DU BOISGUEHENEUC F, LEVY R, VOLLE E, et al. Functions of the left superior frontal gyrus in humans: a lesion study[J]. Brain, 2006, 129(12): 3315-3328.

[23] BECHARA A, DAMASIO H, DAMASIO A R. Emotion, decision making and the orbitofrontal cortex[J]. Cerebral Cortex, 2000, 10(3): 295-307.

[24] ASTOLFI L, TOPPI J, DE VICO FALLANI F, et al. Imaging the social brain by simultaneous hyperscanning during subject interaction[J]. IEEE Intelligent Systems, 2011, 26(5): 38-45.

[25] 张立杰. 注意缺陷多动障碍儿童右侧额岛皮层静息态功能连接的改变[D]. 北京: 北京师范大学, 2010.

    ZHANG Lijie.Therestingstate functional connectivitychanges of the right frontal cortex island of children with attention deficit hyperactivity disorder[D].Being: Beijing Normal University, 2010.

[26] LIU T, SAITO H, OI M. Role of the right inferior frontal gyrus in turn-based cooperation and competition: a near-infrared spectroscopy study[J]. Brain and Cognition, 2015, 99: 17-23.

[27] SAITO D N, TANABE H C, IZUMA K, et al. “Stay tuned”: inter-individual neural synchronization during mutual gaze and joint attention[J]. Frontiers in Intergrative Neuroscience, 2010, 4: 127.

[28] SHAMAY-TSOORY S. The neuropsychology of empathy: evidence from lesion studies[J]. Revue de Neuropsychologie, 2016, 7(4): 237-243.

[29] 崔芳, 南云, 罗跃嘉. 共情的认知神经研究回顾[J]. 心理科学进展, 2008, 16(2): 250-254.

    CUI Fang, NAN Yun, LUO Yuejia. A review of cognitive neuroscience studies on empathy[J]. Advances in Psychological Science, 2008, 16(2): 250-254.

[30] BAKER J M, LIU N, CUI X, et al. Sex differences in neural and behavioral signatures of cooperation revealed by fNIRS hyperscanning[J]. Scientific Reports, 2016, 6: 30512.

[31] PAN Y, CHENG X, ZHANG Z, et al. Cooperation in Lovers: an fNIRS-based hyperscanning study[J]. Human Brain Mapping, 2016, Oct 4 online.

郭欢, 申荷永, 昝艺, 张道华, 蔡婷婷, 朱绘霖. 基于功能性近红外光谱技术的双人同步交互测量研究[J]. 激光生物学报, 2016, 25(6): 523. Guo Huan, Shen Heyon, Zan Yi, Zhang Daohua, Cai Tingting, Zhu Huilin. Hyper-scan Interacting Brains with Functional Near-Infrared Spectroscopy[J]. Acta Laser Biology Sinica, 2016, 25(6): 523.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!