光学学报, 2017, 37 (8): 0806002, 网络出版: 2018-09-07   

全固态双层芯结构色散补偿微结构光纤 下载: 702次

All-Solid Dual-Concentric-Core Microstructure Fiber for Dispersion Compensation
作者单位
1 燕山大学信息科学与工程学院, 河北 秦皇岛 066004
2 河北省特种光纤与光纤传感重点实验室, 河北 秦皇岛 066004
引用该论文

王伟, 屈玉玮, 左玉婷, 王珺琪, 孟凡超, 张春兰, 韩颖, 侯蓝田. 全固态双层芯结构色散补偿微结构光纤[J]. 光学学报, 2017, 37(8): 0806002.

Wei Wang, Yuwei Qu, Yuting Zuo, Junqi Wang, Fanchao Meng, Chunlan Zhang, Ying Han, Lantian Hou. All-Solid Dual-Concentric-Core Microstructure Fiber for Dispersion Compensation[J]. Acta Optica Sinica, 2017, 37(8): 0806002.

参考文献

[1] Knight J C, Birks T A. Russell P S J, et al . All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters, 1996, 21(19): 1547-1549.

    Knight J C, Birks T A. Russell P S J, et al . All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters, 1996, 21(19): 1547-1549.

[2] Birks T A, Knight J C, Russell P S. Endlessly single-mode photonic crystal fiber[J]. Optics Letters, 1997, 22(13): 961-963.

    Birks T A, Knight J C, Russell P S. Endlessly single-mode photonic crystal fiber[J]. Optics Letters, 1997, 22(13): 961-963.

[3] 施伟华, 王梦艳. 三零色散光子晶体光纤中超连续谱的产生与控制[J]. 光学学报, 2015, 42(8): 0805009.

    施伟华, 王梦艳. 三零色散光子晶体光纤中超连续谱的产生与控制[J]. 光学学报, 2015, 42(8): 0805009.

    Shi Weihua, Wang Mengyan. Generation and control of supercontinuum in photonic crystal fiber with three-zero dispersion wavelengths[J]. Acta Optica Sinica, 2015, 42(8): 0805009.

    Shi Weihua, Wang Mengyan. Generation and control of supercontinuum in photonic crystal fiber with three-zero dispersion wavelengths[J]. Acta Optica Sinica, 2015, 42(8): 0805009.

[4] 张静, 姜海明, 谢康, 等. 基于空气孔填充的光子晶体光纤与普通单模光纤低损耗耦合研究[J]. 光学学报, 2015, 35(4): 0406006.

    张静, 姜海明, 谢康, 等. 基于空气孔填充的光子晶体光纤与普通单模光纤低损耗耦合研究[J]. 光学学报, 2015, 35(4): 0406006.

    Zhang Jing, Jiang Haiming, Xie Kang, et al. Low-loss coupling between photonic crystal fibers and standard single-mode fibers based on air holes filling[J]. Acta Optica Sinica, 2015, 35(4): 0406006.

    Zhang Jing, Jiang Haiming, Xie Kang, et al. Low-loss coupling between photonic crystal fibers and standard single-mode fibers based on air holes filling[J]. Acta Optica Sinica, 2015, 35(4): 0406006.

[5] 王丹, 郑义. 双包层色散平坦光子晶体光纤的数值模拟与分析[J]. 光学学报, 2011, 31(8): 0806010.

    王丹, 郑义. 双包层色散平坦光子晶体光纤的数值模拟与分析[J]. 光学学报, 2011, 31(8): 0806010.

    Wang Dan, Zheng Yi. Numerical simulation and analysis of double cladding photonic crystal fiber with flattened dispersion[J]. Acta Optica Sinica, 2011, 31(8): 0806010.

    Wang Dan, Zheng Yi. Numerical simulation and analysis of double cladding photonic crystal fiber with flattened dispersion[J]. Acta Optica Sinica, 2011, 31(8): 0806010.

[6] 王红华, 薛文瑞, 张文梅. 双芯复合格点光子晶体光纤的负色散特性[J]. 光学学报, 2008, 28(1): 27-30.

    王红华, 薛文瑞, 张文梅. 双芯复合格点光子晶体光纤的负色散特性[J]. 光学学报, 2008, 28(1): 27-30.

    Wang Honghua, Xue Wenrui, Zhang Wenmei. Negative dispersion properties of photonic crystal fiber with dual core and composite lattice[J]. Acta Optica Sinica, 2008, 28(1): 27-30.

    Wang Honghua, Xue Wenrui, Zhang Wenmei. Negative dispersion properties of photonic crystal fiber with dual core and composite lattice[J]. Acta Optica Sinica, 2008, 28(1): 27-30.

[7] 关寿华, 于清旭, 郑建洲. 光子晶体光纤色散极值特性的研究[J]. 光学学报, 2012, 32(8): 0806001.

    关寿华, 于清旭, 郑建洲. 光子晶体光纤色散极值特性的研究[J]. 光学学报, 2012, 32(8): 0806001.

    Guan Shouhua, Yu Qingxu, Zheng Jianzhou. Study on the extreme characteristics of dispersion of photonic crystal fiber[J]. Acta Optica Sinica, 2012, 32(8): 0806001.

    Guan Shouhua, Yu Qingxu, Zheng Jianzhou. Study on the extreme characteristics of dispersion of photonic crystal fiber[J]. Acta Optica Sinica, 2012, 32(8): 0806001.

[8] 赵兴涛, 刘晓旭, 王书涛, 等. 三个零色散波长光子晶体光纤及相位匹配特性[J]. 光学学报, 2015, 35(9): 0906007.

    赵兴涛, 刘晓旭, 王书涛, 等. 三个零色散波长光子晶体光纤及相位匹配特性[J]. 光学学报, 2015, 35(9): 0906007.

    Zhao Xingtao, Liu Xiaoxu, Wang Shutao, et al. Phase-matching characteristic of photonic crystal fiber with three zero-dispersion wavelengths[J]. Acta Optica Sinica, 2015, 35(9): 0906007.

    Zhao Xingtao, Liu Xiaoxu, Wang Shutao, et al. Phase-matching characteristic of photonic crystal fiber with three zero-dispersion wavelengths[J]. Acta Optica Sinica, 2015, 35(9): 0906007.

[9] Birks T A, Mogilevtsev D, Knight J C, et al. Dispersion compensation using single-material fibers[J]. Photonic Technology Letters, 1999, 11(6): 674-676.

    Birks T A, Mogilevtsev D, Knight J C, et al. Dispersion compensation using single-material fibers[J]. Photonic Technology Letters, 1999, 11(6): 674-676.

[10] Gérôme F, Auguste J L, Blondy J M. Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fibre[J]. Optics Letters, 2004, 29(23): 2725-2727.

    Gérôme F, Auguste J L, Blondy J M. Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fibre[J]. Optics Letters, 2004, 29(23): 2725-2727.

[11] Liu Y, Wang J Y, Li Y Q, et al. A novel hybrid photonic crystal dispersion compensating fiber with multiple windows[J]. Optics & Laser Technology, 2012, 44(7): 2076-2079.

    Liu Y, Wang J Y, Li Y Q, et al. A novel hybrid photonic crystal dispersion compensating fiber with multiple windows[J]. Optics & Laser Technology, 2012, 44(7): 2076-2079.

[12] Matloub S, Hosseini S M, Rostami A. Analysis and optimization of a dual-core dispersion compensation fiber based on a 12-fold photonic quasicrystal structure[J]. Applied Optics, 2015, 53(35): 8366-8373.

    Matloub S, Hosseini S M, Rostami A. Analysis and optimization of a dual-core dispersion compensation fiber based on a 12-fold photonic quasicrystal structure[J]. Applied Optics, 2015, 53(35): 8366-8373.

[13] Han L H, Liu L M, Yu Z Y, et al. Dispersion compensation properties of dual-concentric core photonic crystal fibers[J]. Chinese Optics Letters, 2014, 12(1): 010603.

    Han L H, Liu L M, Yu Z Y, et al. Dispersion compensation properties of dual-concentric core photonic crystal fibers[J]. Chinese Optics Letters, 2014, 12(1): 010603.

[14] Hsu J M, Zheng W H, Lee C L, et al. Theoretical investigation of a dispersion compensating photonic crystal fibre with ultra-high dispersion coefficient and extremely low confinement loss[J]. Photonics and Nanostructures-Fundamentals and Applications, 2015, 16: 1-8.

    Hsu J M, Zheng W H, Lee C L, et al. Theoretical investigation of a dispersion compensating photonic crystal fibre with ultra-high dispersion coefficient and extremely low confinement loss[J]. Photonics and Nanostructures-Fundamentals and Applications, 2015, 16: 1-8.

[15] Fujisawa T, Saitoh K, Wada K, et al. Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation[J]. Optics Express, 2006, 14(2): 893-900.

    Fujisawa T, Saitoh K, Wada K, et al. Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation[J]. Optics Express, 2006, 14(2): 893-900.

[16] Varshney S K, Fujisawa T, Saitoh K, et al. Design and analysis of a broadband dispersion compensating photonic crystal fibre Raman amplifier operating in S-band[J]. Optics Express, 2006, 14(8): 3528-3540.

    Varshney S K, Fujisawa T, Saitoh K, et al. Design and analysis of a broadband dispersion compensating photonic crystal fibre Raman amplifier operating in S-band[J]. Optics Express, 2006, 14(8): 3528-3540.

[17] Hsu J M, Ye G S. Dispersion ultrastrong compensating fiber based on a liquid-filled hybrid structure of dual-concentric core and depressed-clad photonic crystal fiber[J]. Journal of the Optical Society of America B, 2012, 29(8): 2021-2028.

    Hsu J M, Ye G S. Dispersion ultrastrong compensating fiber based on a liquid-filled hybrid structure of dual-concentric core and depressed-clad photonic crystal fiber[J]. Journal of the Optical Society of America B, 2012, 29(8): 2021-2028.

[18] Maji P S, Chaudhuri P R. Design of ultra large negative dispersion PCF with selectively tunable liquid infiltration for dispersion compensation[J]. Optics Communications, 2014, 325(5): 134-143.

    Maji P S, Chaudhuri P R. Design of ultra large negative dispersion PCF with selectively tunable liquid infiltration for dispersion compensation[J]. Optics Communications, 2014, 325(5): 134-143.

[19] Mangan BJ , CounyF , FarrL , et al . Slope-matched dispersion-compensating photonic crystal fibre[C]. Conference on Lasers & Electro-Optics , 2004 : CPDD3 .

    Mangan BJ , CounyF , FarrL , et al . Slope-matched dispersion-compensating photonic crystal fibre[C]. Conference on Lasers & Electro-Optics , 2004 : CPDD3 .

王伟, 屈玉玮, 左玉婷, 王珺琪, 孟凡超, 张春兰, 韩颖, 侯蓝田. 全固态双层芯结构色散补偿微结构光纤[J]. 光学学报, 2017, 37(8): 0806002. Wei Wang, Yuwei Qu, Yuting Zuo, Junqi Wang, Fanchao Meng, Chunlan Zhang, Ying Han, Lantian Hou. All-Solid Dual-Concentric-Core Microstructure Fiber for Dispersion Compensation[J]. Acta Optica Sinica, 2017, 37(8): 0806002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!