光学学报, 2020, 40 (7): 0730002, 网络出版: 2020-04-15   

XGBoost在气体红外光谱识别中的应用 下载: 871次

Application of XGBoost in Gas Infrared Spectral Recognition
作者单位
1 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
引用该论文

陶孟琪, 刘家祥, 吴越, 宁志强, 方勇华. XGBoost在气体红外光谱识别中的应用[J]. 光学学报, 2020, 40(7): 0730002.

Mengqi Tao, Jiaxiang Liu, Yue Wu, Zhiqiang Ning, Yonghua Fang. Application of XGBoost in Gas Infrared Spectral Recognition[J]. Acta Optica Sinica, 2020, 40(7): 0730002.

参考文献

[1] Sheehe S L, Jackson S I. Identification of species from visible and near-infrared spectral emission of a nitromethane-air diffusion flame[J]. Journal of Molecular Spectroscopy, 2019, 364: 111185.

[2] 韩应哲, 张延炘, 常胜江, 等. 基于最佳小波变换和神经网络的气体非线性荧光光谱的识别[J]. 光电子·激光, 2005, 16(6): 718-721.

    Han Y Z, Zhang Y X, Chang S J, et al. Recognition for the nonlinear fluorescence spectra based on optimal wavelet transform and artificial neural network[J]. Journal of Optoelectronics·Laser, 2005, 16(6): 718-721.

[3] 白鹏, 谢文俊, 刘君华. 层次式SVM子集含烃类混合气体光谱分析方法[J]. 光谱学与光谱分析, 2008, 28(2): 299-302.

    Bai P, Xie W J, Liu J H. Method of infrared spectrum analysis of hydrocarbon mixed gas based on multilevel and SVM-subset[J]. Spectroscopy and Spectral Analysis, 2008, 28(2): 299-302.

[4] 白鹏, 王建华, 王宏柯, 等. 基于SVM回归模型的混合气体组分种类光谱识别方法[J]. 光子学报, 2008, 37(4): 754-757.

    Bai P, Wang J H, Wang H K, et al. A method of mixed gas component infrared spectrum recognition based on SVM regression model[J]. Acta Photonica Sinica, 2008, 37(4): 754-757.

[5] 刘美娟, 冯巍巍, 史丰荣, 等. 污染气体红外光谱特征的快速提取与识别[J]. 光谱学与光谱分析, 2006, 26(10): 1854-1857.

    Liu M J, Feng W W, Shi F R, et al. Fast algorithm for feature extraction and identification of infrared spectra of polluted gases[J]. Spectroscopy and Spectral Analysis, 2006, 26(10): 1854-1857.

[6] 余段辉. 基于红外光谱的气体识别与浓度检测算法研究[D]. 成都: 电子科技大学, 2018: 13- 58.

    Yu DH. Research on gas recognition and concentration detection algorithm based on infrared spectrum[D]. Chengdu: University of Electronic Science and Technology of China, 2018: 13- 58.

[7] Chen TQ, GuestrinC. XGBoost: a scalable tree boosting system[C]∥Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 13-17, 2016, San Francisco, California. New York: ACM, 2016: 785- 794.

[8] Zopluoglu C. Detecting examinees with item preknowledge in large-scale testing using extreme gradient boosting (XGBoost)[J]. Educational and Psychological Measurement, 2019, 79(5): 931-961.

[9] Torlay L, Perrone-Bertolotti M, Thomas E, et al. Machine learning: XGBoost analysis of language networks to classify patients with epilepsy[J]. Brain Informatics, 2017, 4: 159-169.

[10] 李大中, 王超, 李颖宇. 基于XGBoost算法的风机叶片结冰状态评测[J]. 电力科学与工程, 2019, 35(9): 43-48.

    Li D Z, Wang C, Li Y Y. Evaluation of fan blade icing based on XGBoost algorithm[J]. Electric Power Science and Engineering, 2019, 35(9): 43-48.

[11] 张枭, 罗阿理. 基于XGBOOST的恒星光谱分类特征数值化[J]. 光谱学与光谱分析, 2019, 39(10): 3292-3296.

    Zhang X, Luo A. XGBOOST based stellar spectral classification and quantized feature[J]. Spectroscopy and Spectral Analysis, 2019, 39(10): 3292-3296.

[12] 张微薇, 刘盾, 贾修一. 基于XGBoost的三分类优惠券预测方法[J]. 南京航空航天大学学报, 2019, 51(5): 643-651.

    Zhang W W, Liu D, Jia X Y. Three classified coupon prediction based on XGBoost algorithm[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(5): 643-651.

[13] Mo H, Sun H J, Liu J J, et al. Developing window behavior models for residential buildings using XGBoost algorithm[J]. Energy and Buildings, 2019, 205: 109564.

[14] , 等. 基于基线漂移模型的气体光谱自动基线校正[J]. 光谱学与光谱分析, 2018, 38(12): 300-305.

    王昕, 王昕, 吕世龙, 吕世龙, 李岩, 李岩, 等. 基于基线漂移模型的气体光谱自动基线校正[J]. 光谱学与光谱分析, 2018, 38(12): 3946-3951.

    Wang X, Wang X, Lu S L, Lü S L, Li Y, Li Y, et al. Automatic baseline correction of gas spectra based on baseline drift model[J]. Spectroscopy and Spectral Analysis, 2018, 38(12): 3946-3951.

    , et al. Automatic baseline correction of gas spectra based on baseline drift model[J]. Spectroscopy and Spectral Analysis, 2018, 38(12): 300-305.

[15] Liu J, Koenig J L. A new baseline correction algorithm using objective criteria[J]. Applied Spectroscopy, 1987, 41(3): 447-449.

[16] 赵阅书, 薛晓明, 宋小娇, 等. 6种阔叶树材红外光谱特征的比较[J]. 林业工程学报, 2019, 33(5): 40-45.

    Zhao Y S, Xue X M, Song X J, et al. Comparison and analysis of FT-IR spectra for six broad-leaved wood species[J]. Journal of Forestry Engineering, 2019, 33(5): 40-45.

[17] 杨三强, 颜立景, 刘娜, 等. 基于红外光谱图特征峰分析的沥青指标[J]. 江苏大学学报(自然科学版), 2019, 40(2): 244-248.

    Yang S Q, Yan L J, Liu N, et al. Asphalt index based on characteristic spectral analysis of infrared spectrum[J]. Journal of Jiangsu University(Natural Science Edition), 2019, 40(2): 244-248.

[18] 庄琳, 宋小娇, 徐燕红. 水青树木材红外光谱特征研究[J]. 湖北农业科学, 2017, 56(7): 1334-1339, 1344.

    Zhuang L, Song X J, Xu Y H. Study on the infrared spectral characteristic of tetracentron sinense wood[J]. Hubei Agricultural Sciences, 2017, 56(7): 1334-1339, 1344.

陶孟琪, 刘家祥, 吴越, 宁志强, 方勇华. XGBoost在气体红外光谱识别中的应用[J]. 光学学报, 2020, 40(7): 0730002. Mengqi Tao, Jiaxiang Liu, Yue Wu, Zhiqiang Ning, Yonghua Fang. Application of XGBoost in Gas Infrared Spectral Recognition[J]. Acta Optica Sinica, 2020, 40(7): 0730002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!