激光技术, 2016, 40 (6): 853, 网络出版: 2016-11-23   

CFRP与不锈钢激光焊接的有限元分析

Finite element analysis of CFRP and stainless steel laser welding
作者单位
1 宁波大学 机械工程与力学学院, 宁波 315211
2 中国科学院 宁波材料技术与工程研究所, 宁波 315201
3 北京大学 深圳研究院, 深圳 518055
摘要
为了研究碳纤维增强热塑性复合材料(CFRP)与不锈钢激光焊接的机理, 及不同工艺参量对焊缝质量的影响规律, 采用ANSYS建立了基于热传导焊的3维有限元模型, 计算得到了温度场和应力场的分布, 分析了激光功率、焊接速率和光斑直径等参量对焊缝宽度和焊接深度的影响规律, 并进一步计算分析了焊接后的残余应力对焊接质量的影响情况。结果表明, 该有限元模型能够快速、有效模拟激光对CFRP-不锈钢焊接温度场和残余应力分布; 激光功率、焊接速率和光斑直径等工艺参量对焊缝宽度和焊接深度有着重要的影响; 计算出的焊接残余应力与残余应力的理论分布规律也基本吻合, 验证了该有限元模型的可靠性。该研究结果对获得高质量CFRP-不锈钢焊接接头是有帮助的。
Abstract
In order to investigate the mechanism of laser welding of carbon fiber reinforced plastics(CFRP)and stainless steel, and find out the effect of different process parameters on welding quality, a 3-D finite element model based on heat conduction welding was built by ANSYS. The distributions of temperature field and stress field were calculated by ANSYS. The effect of process parameters, including laser power, scanning welding and spot diameter, on welding width and welding depth was investigated. And the influence of welding residual stress on the quality of welding was also investigated. The results show that temperature field and residual stress distributions can be rapidly and effectively simulated by the proposed finite element model. Welding width and depth are affected by laser power, scanning welding and spot diameter. The calculated distribution and the theoretical distribution of residual stress agree well. The result confirms that the model is reliable. The result is helpful to obtain high quality welded joints of CFRP-stainless steel.
参考文献

[1] YIN X Y, ZHU B, LIU H Zh, et al. Advance of the research in carbon fiber reinforced thermoplastic resin matrix composite[J]. Hi-Tech Fiber & Application, 2011, 12(6):42-44(in Chinese).

[2] TAN X H, SHAN J G, REN J L. Effects of Cr planting layer on shear strength and interface bonding characteristics of mind steel/CFRP joint by laser heating[J]. Acta Metallurgica, 2013, 49(6):751-756(in Chinese).

[3] WANG X G, YU Y, LI Sh M, et al. The research on fiber reinforced thermoplastic composite[J]. Fiber Composites, 2011, 6(2): 44-47(in Chinese).

[4] XING A. Laser transmission welding of thermoplastic polyurethane films[D]. Zhenjiang: Jiangsu University, 2009:42-57(in Chinese).

[5] WU Y W, LIU H X, LI P, et al. Experimental study of laser transmission welding between polycarbonate and polyphenylene oxide [J]. Chinese Journal of Lasers, 2015, 42(5):1801-1807(in Chinese).

[6] GONG F, HU X Y, TAN Y, et al. Semiconductor laser transmission welding of thermoplastic polypropylene [J]. Transactions of the China Welding Institution, 2013, 34(4): 109-112(in Chinese).

[7] JIAO J K, JIANG H R, ZHANG W W. Study on thremal plastics laser transimisson welding[J]. Electromachining & Mould, 2013(6):55-58(in Chinese).

[8] JIAO J K, BAI X B, WANG X B. Finite element analysis of PMMA laser transmission welding[J]. Laser Technology, 2011,35(4):453-456(in Chinese).

[9] CHEN Y J, GUO Zh N, LIAN H Sh. Finite element simulation and experimental study about laser micro-joining between biopolymer and metal [J]. Laser Technology, 2013, 37(6): 760-765(in Chinese).

[10] JUNG K W, KAWAHITO Y, TAKAHASHI M, et al. Laser direct joining of carbon fiber reinforced plastic to zinc-coated steel[J]. Materials and Design, 2013, 47(9):179-188.

[11] JUNG K W, KAWAHITO Y, KATAYAMA S. Laser direct joining of carbon fibre reinforced plastic to stainless steel[J]. Science Technology of Weld Joint, 2011, 16(8):676-680.

[12] LIU X X, HUANG R, YAO G. Numerical simulation of the temperature field of laser butt welding of titanium alloy sheet[J]. Laser Technology, 2013,37(5):700-704(in Chinese).

[13] LIU H X, XING A, ZHANG H Zh, et al. Temperature field simulation on laser transmission welding of polyvinylchloride[J].Chinese Journal of Lasers, 2008, 35(11):1801-1807(in Chinese).

[14] WANG X, LI P, LIU H X, et al. Temperature field simulation on laser transmission joining of PET films and titanium[J]. Chinese Journal of Lasers, 2010, 37(5):1391-1397(in Chinese).

[15] DENG D, MURAKAWA H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J]. Computational Materials Science, 2006,37(3):269-277.

[16] WU Q, XU L Y, YANG Y Q, et al. Study on laser welding residual stress of high strength steel[J]. Chinese Journal of Lasers, 2015,42(6):0603007(in Chinese).

王强, 焦俊科, 王飞亚, 张文武, 盛立远. CFRP与不锈钢激光焊接的有限元分析[J]. 激光技术, 2016, 40(6): 853. WANG Qiang, JIAO Junke, WANG Feiya, ZHANG Wenwu, SHENG Liyuan. Finite element analysis of CFRP and stainless steel laser welding[J]. Laser Technology, 2016, 40(6): 853.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!