红外与激光工程, 2018, 47 (8): 0803010, 网络出版: 2018-08-29  

时分复制脉冲放大技术在超快光纤激光器中的应用研究进展

Research progress of divided pulse amplification technology in ultrafast fiber lasers
作者单位
1 江苏师范大学 物理与电子工程学院 江苏省先进激光技术与新兴产业协同创新中心江苏省先进激光材料与器件重点实验室, 江苏 徐州 221116
2 深圳大学 光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
摘要
随着高功率超快光纤激光器的迅速发展, 时分复制脉冲放大技术近年来获得了广泛的关注。时分复制脉冲放大技术可以通过双折射晶体组或自由空间时延来实现。将时分复制脉冲技放大技术与啁啾脉冲放大、空间分束和光子晶体光纤放大等技术相结合, 运用于相干光束合成和非线性压缩, 可以提升超快光纤激光器的脉冲能量和峰值功率。文中对时分复制脉冲放大技术在超快光纤激光器中的最新研究进展进行了详细综述, 重点分析了时分复制脉冲放大技术在相干光束合成应用中的不同系统结构, 并对时分复制脉冲放大技术的优化和发展方向进行了展望。
Abstract
With the rapid development of high power ultrafast fiber lasers, divided-pulse amplification (DPA) technology has attracted extensive concerns. DPA can be implemented through birefringent crystals or freespace delay lines. By combining with the techniques of chirped pulse amplification, spatial beam splitting and photonic crystal fiber amplification, DPA can be applied to coherent beam combining and nonlinear compression in order to increase both the pulse energy and peak power of ultrafast fiber lasers. The research progress of DPA in ultrafast fiber lasers was reviewed. Different system structures of DPA in the applications of coherent beam combining were analyzed. The optimization and further development of DPA was also prospected.
参考文献

[1] Fermann M E, Hartl I. Ultrafast fibre lasers [J]. Nature Photonics, 2013, 7(12): 868-874.

[2] Limpert J, Deguil-Robin N, Manek-H 觟nninger I, et al. High-power rod-type photonic crystal fiber laser[J]. Optics Express, 2005, 13(4): 1055-1058.

[3] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 2011, 55(6): 447-449.

[4] Zhou S, Wise F W, Ouzounov D G. Divided-pulse amplification of ultrashort pulses [J]. Optics Letters, 2007, 32(7): 871-873.

[5] Kong L J, Zhao L M, Lefrancois S, et al. Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier [J]. Optics Letters, 2012, 37(2): 253-255.

[6] Roither S, Verhoef A, Mucke O D, et al. Sagnac-interferometer multipass-loop amplifier [C]//2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008. Conference on. IEEE, 2008: 1-2.

[7] Lesparre F, Gomes J T, Délen X, et al. Yb:YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique[J]. Optics Letters, 2016, 41(7):1628.

[8] Bai Y S, Chen X T, Chen J W, et al. Numerical study on picosecond pulse amplifier based on divided pulse amplification technique [J]. Chinese Journal of Lasers, 2017(2): 201021. (in Chinese)

[9] Limpert J. Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5):268-277.

[10] Daniault L, Hanna M, Papadopoulos D N, et al. High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining [J]. Optics Express, 2012, 20(19): 21627.

[11] Zaouter Y, Guichard F, Daniault L, et al. Femtosecond fiber chirped-and divided-pulse amplification system[C]//Lasers and Electro-Optics Pacific Rim. IEEE, 2013: 1-2.

[12] Guichard F, Zaouter Y, Hanna M, et al. High-energy chirped-and divided-pulse Sagnac femtosecond fiber amplifier [J]. Optics Letters, 2015, 40(1): 89.

[13] Pouysegur J, Guichard F, Zaouter Y, et al. Hybrid high-energy high-power pulsewidth-tunable picosecond source [J]. Optics Letters, 2015, 40(22): 5184.

[14] Kienel M, Klenke A, Eidam T, et al. Analysis of passively combined divided-pulse amplification as an energy-scaling concept [J]. Optics Express, 2013, 21(23): 29031-29042.

[15] Kienel M, Klenke A, Eidam T, et al. Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification[J]. Optics Letters, 2014, 39(4): 1049-1052.

[16] Shay T M. Theory of electronically phased coherent beam combination without a reference beam [J]. Optics Express, 2006, 14(25): 12188.

[17] Limpert J, Stutzki F, Jansen F, et al. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization[J]. Light: Science & Applications, 2012, 1(4): e8.

[18] Tünnermann A, Klenke A, Limpert J, et al. Multidimensional coherent pulse addition of ultrashort laser pulses [J]. Optics Letters, 2015, 40(4): 522-525.

[19] Eidam T, Kienel M, Klenke A, et al. Divided-pulse amplification for terawatt-class fiber lasers[J]. European Physical Journal Special Topics, 2015, 224(13): 2567-2571.

[20] Kienel M, Müller M, Klenke A, et al. 12 mJ·kW-class ultrafast fiber laser system using multidimensional coherent pulse addition [J]. Optics Letters, 2016, 41(14): 3343.

[21] Jacqmin H, Jullien A, Mercier B, et al. Passive coherent combining of CEP-stable few-cycle pulses from a temporally divided hollow fiber compressor[J]. Optics Letters, 2015, 40(5): 709.

[22] Klenke A, Kienel M, Eidam T, et al. Divided-pulse nonlinear compression[J]. Optics Letters, 2013, 38(22): 4593-4596.

[23] Guichard F, Zaouter Y, Hanna M, et al. Energy scaling of a nonlinear compression setup using passive coherent combining [J]. Optics Letters, 2013, 38(21): 4437.

[24] Hao Q, Zhang Q, Sun T, et al. Divided-pulse nonlinear amplification and simultaneous compression[J]. Applied Physics Letters, 2015, 106(10): 16671-16676.

[25] Wang C, Li W, Li L, et al. Femtosecond Er-doped fiber laser based on divided-pulse nonlinear amplification [J]. Journal of Optics, 2016, 18(2): 025503.

[26] Hao Q, Wang Y, Liu T, et al. Divided-pulse nonlinear amplification at 1.5 μm [J]. IEEE Photonics Journal, 2016, 8(5): 1-8.

[27] Yu J, Feng Y, Duan L N, et al. Quasi-all-fiber high-efficiency divided chirp-pulse amplification system based on active controlling [J]. IEEE Photonics Journal, 2016, 8(1): 1-9.

[28] Stark H, Müller M, Kienel M, et al. Electro-optically controlled divided-pulse amplification[J]. Optics Express, 2017, 25(12): 13494.

[29] Zaouter Y, Guichard F, Hoenninger C, et al. High average power 600 μJ ultrafast fiber laser for micromachining application[J]. Journal of Laser Applications, 2015, 27(S2): S29301.

王郁飞, 李雷, 赵鹭明. 时分复制脉冲放大技术在超快光纤激光器中的应用研究进展[J]. 红外与激光工程, 2018, 47(8): 0803010. Wang Yufei, Li Lei, Zhao Luming. Research progress of divided pulse amplification technology in ultrafast fiber lasers[J]. Infrared and Laser Engineering, 2018, 47(8): 0803010.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!