强激光与粒子束, 2015, 27 (9): 091001, 网络出版: 2015-11-30   

非链式HF激光器能量稳定性影响因素实验研究

Experimental investigation on factors influencing
作者单位
西北核技术研究所, 激光与物质相互作用国家重点实验室, 西安 710024
摘要
为提高非链式电激励脉冲HF激光的能量稳定性,分析了激光产生反应动力学和影响激光能量稳定性的主要因素,得知基态HF分子的生成、工作气体的温度上升以及工作气体C2H6的消耗是激光能量快速下降的主要原因。经实验研究,没有采用任何反应产物去除方法的情况下,激光器输出1600个脉冲激光后,激光能量下降率达31%,采用沸石分子筛吸附单元对基态HF分子进行吸附后,同样输出1600个脉冲激光,激光能量基本趋于平稳状态,且输出约5500个脉冲激光后,激光能量较初始平均值仅有10%的下降;另外,在激光器运行过程中,恢复工作气体的初始温度和补充少量的C2H6也能改善激光能量的稳定性,其中补充25%的C2H6气体可使激光能量提高近8%。由激光产生反应动力学和实验研究结果可知,增加分子筛吸附单元、工作气体温控单元和工作气体实时补给单元可提高激光能量的稳定性。output energy stability of non-chain HF laser
Abstract
In order to improve the output energy stability of non-chain discharge-pumped pulsed HF laser, the chemical reaction dynamics of the HF laser and key factors determining the output stability were analyzed. The combination of the generation of fundamental-state HF molecules, the rising temperature of gases and the consumption of C2H6 was responsible for the rapid decrease of output energy. Experiments were performed to verify the analysis, from which some conclusions could be drawn as follows. The output energy decreased by as high as roughly 31% of the starting value without eliminating of reaction products (i.e., the fundamental-state HF molecules), whereas the output energy was relatively much more stable with zeolite molecular sieve to adsorb the fundamental-state HF molecules after 1600 output pulses. The output energy decreasing ratio of the latter was only 10% after 5500 output pulses. In addition, temperature recovering of gain medium to the initial state, as well as the supplement of C2H6 into the cavity, was demonstrated to improve the stability of output energy. Quantitatively, supplement of C2H6 by 25% could improve the output energy by 8%. According to the chemical reaction dynamics and experimental results, the output energy stability is supposed to be improved by mounting the zeolite molecular sieve absorber, gases temperature controller and real-time gain medium supplement unit into the HF laser device.
参考文献

[1] Rickwood K R. A comparison of methods of electrically exciting small pulsed HF lasers suitable for medical applications[J]. Opt Commun, 1997, 136(5):480-486.

[2] 黄珂,易爱平,于力,等.电激励脉冲HF激光SF6/C2H6工作气体的放电特性[J].强激光与粒子束, 2010, 22(10):2353-2357.

    Huang Ke, Yi Aiping, Yu Li, et al. Discharge characteristics of SF6/C2H6 working mixture in electric-initiated pulsed HF laser. High Power Laser and Particle Beams, 2010, 22(10):2353-2357

[3] Apollonov V V, Firsov K N, Kazantesev S Yu. Scaling up of non-chain HF(DF) laser initiated by self-sustained volume discharge[C]//Proc of SPIE. 2000, 3886:370-381.

[4] Rudko R I, Drozdowicz Z, Linhares S. High-repetition rate, recirculating DF/HF laser[J].Rev Sci Instrum, 1982, 53:452-457.

[5] Brunet H, Mabbu M, Voignier F. High energy, high average power pulsed HF/DF chemical laser[C]//Proc of SPIE. 1995, 2502:388-392.

[6] Bernard L. High average power phototriggered gas laser[C]//Proc of SPIE. 1998, 3403:54-58.

[7] 柯长军,万重怡.放电引发非链式脉冲HF/DF激光器的研究进展[J].激光与红外, 2003, 33(4):304-306.

    Ke Changjun, Wan Chongyi. State and prospect of electric-discharge non-chain pulsed HF laser. Laser & Infrared, 2003, 33(4):304-306

[8] 柯长军,张阔海,孙科,等.重复频率放电引发的脉冲HF(DF)激光器[J].红外与激光工程, 2007, 36(s):36-38.

    Ke Changjun, Zhang Kuohai, Sun Ke, et al. A periodically pulsed HF/DF gas discharge laser. Infrared and Laser Engineering, 2007, 36(s):36-38

[9] 易爱平,刘晶儒,唐影,等.电激励重复频率非链式HF激光器[J].光学 精密工程, 2011, 19(2):360-365.

    Yi Aiping, Liu Jingru, Tang Ying, et al. Electrically initiated repetitive-pulsed non-chain HF laser. Optics and Precision Engineering, 2011, 19(2):360-365

[10] Velkanov S D, Evdokimov P A, Zapol’sky A F, et al. Pulse periodic HF(DF) laser of atmospheric pressure with pulse repetition rate up to 2200 Hz[C]//Proc of SPIE. 2008:71310V.

[11] 黄珂,易爱平,朱峰,等.放电引发的非链式高功率重频HF/DF激光器[J].强激光与粒子束, 2015, 27:041010.

    Huang Ke, Yi Aiping, Zhu Feng, et al. Discharge initiated non-chain high power repetitively pulsed HF/DF laser. High Power Laser and Particle Beams, 2015,27:041010

[12] 高松,邓青华,唐军,等.SG-Ⅲ主机装置预放系统能量平衡与稳定性分析[J].强激光与粒子束, 2013, 25(10):2541-2545.

    Gao Song, Deng Qinghua, Tang Jun, et al. Energy balance and stability analysis of output energy of preamplifier system in SG-Ⅲ facility. High Power Laser and Particle Beams, 2013, 25(10):2541-2545

[13] Bychkov Y, Gortchakov S, Lacour B, et al. Two-step ionization in non-equilibrium SF6 discharges at high current density[J]. J Phys D, 2003, 36:380-388.

[14] 赵家敏,游利兵,余吟山,等.0.73 J脉冲能量KrF准分子激光器的特性[J].强激光与粒子束, 2013, 25(11):3060-3064.

    Zhao Jiamin, You Libing, Yu Yinshan, et al. Characteristics of KrF excimer laser with an output energy of 0.73 J. High Power Laser and Particle Beams, 2013, 25(11):3060-3064

[15] 张小虎,陈南春,汤泉,等.二甲酸钾在A型沸石分子筛中的缓解行为[J].硅酸盐学报, 2013, 41(2):245-250.(Zhang Xiaohu, Chen Nanchun, Tang Quan, et al. Slow releasing behaviors of potassium diformate from zeolite A. Journal of the Chinese Ceramic Society, 2013, 41(2):245-250)

[16] Apollonov V V, Belevtsev A A, Firsov K N, et al. High-power pulse and pulse-periodic non-chain HF(DF) laser[C]//Proc of SPIE. 2002, 4747:31-40.

周松青, 马连英, 黄珂, 沈炎龙, 李高鹏, 栾昆鹏, 朱峰, 易爱平. 非链式HF激光器能量稳定性影响因素实验研究[J]. 强激光与粒子束, 2015, 27(9): 091001. Zhou Songqing, Ma Lianying, Huang Ke, Shen Yanlong, Li Gaopeng, Luan Kunpeng, Zhu Feng, Yi Aiping. Experimental investigation on factors influencing[J]. High Power Laser and Particle Beams, 2015, 27(9): 091001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!