量子光学学报, 2016, 22 (4): 369, 网络出版: 2016-12-09   

非线性超材料中自孤子的传输特性研究

Studies on Propagation of Autosolitons in Nonlinear Metamaterials
作者单位
1 山西大学物理电子工程学院,山西 太原 030006
2 山西大学计算中心,山西 太原 030006
摘要
本文以非线性增益超材料中描述电磁波传输的非线性薛定谔方程为模型,采用拟解法给出了线性增益和非线性损耗平衡下精确的具有非线性啁啾的自孤子解,详细研究了该自孤子在不同非线性电极化或/和磁极化超材料中的存在条件及其传输特性。结果发现,当非线性损耗与线性增益平衡时,超材料中可以存在两种形式的自孤子;而且在不同非线性极化的超材料中两种自孤子的振幅、波宽及空间频率啁啾随着归一化频率、增益系数的变化也不同,这意味着可以通过改变入射波的频率、选择具有不同非线性极化和不同增益的超材料来调节自孤子的传输特性。
Abstract
Based on the model of nonlinear Schrdinger equation describing the propagation of electromagnetic waves in nonlinear metamaterials with gain,the exact autosoliton solutions with nonlinear chirp were obtained under the balance of linear gain and nonlinear loss by the ansatz method.The existence conditions and propagation properties of the autosolitons in metamaterials with different electric and/or magnetic nonlinear polarizations are investigated in detail.The results show that there are two kinds of autosolitons can exist in metamaterials when the nonlinear loss balances the linear gain.Furthermore,for different nonlinear electric and/or magnetic polarization metamaterials,the amplitude,beam width and spatial chirp of these two autosolitons are different with the change of normalized frequency and gain coefficients,which means that we can adjust the propagation properties of the autosolitons by changing the frequency of the incident waves and choosing metamaterials with different nonlinear polarizations and gain.
参考文献

[1] Veselago V G.The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ [J].Sov Phys Usp,1968,10(4):509-514.Doi:10.1071/PU1968v010n04ABEH003699/meta.

[2] Pendry J B.Extremely Low Frequency Plasmons in Metallic Mesostructures[J].Phys Rev Lett,1996,76(25):4773-4776.Doi:10.1103/PhysRevLett.76.4733.

[3] Smith D R,Padilla W J,Vier D C,et al.Composite Medium with Simultaneously Negative Permeability and Permittivity[J].Phys Rev Lett,2000,84(18):4184-4187.Doi:10.1103/PhysRevLett.84.4184.

[4] He Y R,He S L,Gao J,et al.Nanoscale Metamaterial Optical Waveguides with Ultrahigh Refractive Indices[J].J Opt Soc Am B,2012,29(9):2559-2566.Doi:10.1364/JOSAB.29.002559.

[5] ZHANG Y,FENG Y J,ZHU B,et al.Graphene Based Tunable Metamaterial Absorber and Polarization Modulation in Terahertz Frequency[J].Opt Express,2014,22(19):22743-22752.Doi:10.1364/OE.22.022743.

[6] Shalaev V M,Cai W S,Chettiar U K,et al.Negative index of Refraction in Optical Metamaterials[J].Opt Lett,2005,30(24):3356-3358.Doi:10.1364/OL.30.003356.

[7] Zharov A A,Shadrivov I V,Kivshar Y S,et al.Nonlinear Properties of Left-Handed Metamaterials[J].Phys Rev Lett,2003,91(3):037401.DOI: 10.1103/Phys Rev Lett.91.037401.

[8] Lapine M,Gorkunov M,Ringhofer K H.Nonlinearity of a Metamaterial Arising from Diode Insertions into Resonant Conductive Elements[J].Phys Rev E,2003,67(6):065601.DOI:10.1103/Phys Rev E.67.065601.

[9] Xiao S M,Drachev V P,Kildishev A V,et al.Loss-Free and Active Optical Negative-Index Metamaterials[J].Nature,2010,466:735-740.DOI:10.1038/natrue 09278.

[10] Popov A K,Shalaev V M.Compensating Losses in Negative-Index Metamaterials by Optical Parametric Amplification[J].Opt Lett,2006,31(14):2169-2171.DOI:10.1364/OL.31.002169.

[11] Boardman A D,Rapoport Y G,King N,et al.Creating Stable Gain in Active Metamaterials[J].J Opt Soc Am B,2007,24(10):A53-A61.DOI:10.13654/JOSAB.24.000A53.

[12] Schwaiger S,Klingbeil M,Kerbst J,et al.Gain in Three-Dimensional Metamaterials Utilizing Semiconductor Quantum Structures[J].Phys Rev B,2011,84(15):155325.DOI:10.1103/Phy Rev B.84155325.

[13] Lazarides N,Tsironis G P.Coupled Nonlinear Schrdinger Field Equations for Electromagnetic Wave Propagation in Nonlinear Lleft-Handed Materials[J].Phys Rev E,2005,71(3):036614-036617.DOI:10.1103/Phys Rev E.71.036614.

[14] Scalora M,Syrchin M S,Akozbek N,et al.Generalized Nonlinear Schrodinger Equation for Dispersive Susceptibility and Permeability:Application to Negative Index Materials[J].Phys Rev Lett,2005,95(1):013902.DOI:10.1103/Phys Rev Lett.95.013902.

[15] Zharova N A,Shadrivov I V,Zharov A A,et al.Nonlinear Transmission and Spatiotemporal Solitons in Metamaterials with Negative Refraction[J].Opt Express,2005,13(4):1291-1298.DOI:10.1364/JOSAB.24.003058.

[16] WEN S C,WANG Y W,SU W H,et al.Modulation Instability in Nonlinear Negative-Index Material[J].Phys Rev E,2006,73(3):036617.DOI:10.1103/Phys Rev E.73.036617.

[17] XIANG Y J,WEN S C,DAI X Y,et al.Modulation Instability Induced by Nonlinear Dispersion in Nonlinear Metamaterials[J].J Opt Soc Am B,2007,24(12):3058-3063.DOI:10.1364/JOSAB.24.003058.

[18] LI P G,YANG R C,XU Z Y.Gray Solitary-Wave Solutions in Nonlinear Negative-Index Materials[J].Phys Rev E,2010,82(4):046603.DOI:10.1103/Phys Rev E.82.046603.

[19] YANG R C,ZHANG Y.Exact Combined Solitary Wave Solutions in Nonlinear Metamaterials[J].J Opt Soc Am B,2011,28(1):123-127.DOI:10.1364/JOSAB,28.000123.

[20] YANG R C,MIN X M,TIAN J P,et al.Tunable Modulation Instability in Metamaterials with Pseudo-Quintic Nonlinearity,Self-Steepening Effect and Delayed Raman Response[J].Eur Phys J D,2016,70(39).DOI:10.1140/epjd.e 2016-60419-0.

[21] ZHOU Q, LIU L, LIU Y X, et al.Exact Optical Solitons in Metamaterials with Cubic-quintic Nonlinearity and third-order Dispersion[J].Nonlinear Dyn,2015,80:1365-1371.DOI:10.1007/s11071-015-1948-x.

[22] Loomba S,Rajan M S M,Gupta R,et al.Soliton Propagation in Negativeindex materials with Self-steepning effect[J].Eur. Phys J D,2014,68(130).DOI:10.1140/epjd/e2014-40593-9.

[23] YANG R C,MIN X M,TIAN J P,et al.New Types of Exact Quasi-soliton Solutions in Metamaterials[J].Phys Scr,2016,91:025201.

[24] YANG D Q,ZHANG J Q,CHEN B W,et al.Generation of Stable Bright Pulse and the Dark Soliton Interaction in Nonlinear Left-handed Materials[J].Appl Phys A,2012,109:477-480.

[25] Kozyrev A B,Van Der Weide D W.Nonlinear Left-Handed Transmission Line Metamaterials[J].J Phys D Appl Phys,2008,41:173001.DOI:10.1088/0022-3727/41/17/173001.

[26] WANG Z B,FENG Y J,ZHU B,et al.Dark Schrdinger Solitons and Harmonic Generation in Left-Handed Nonlinear Transmission Line[J].J Appl Phys,2010,107:094907.DOI:10.1063/1.3418556.

[27] Gray A,Huang Z J,Lee Y,et al.Experimental Observation of Autosoliton Propagation in a Dispersion-Managed System Guided by Nonlinear Optical Loop Mirrors[J].Opt Lett,2004,29(9):926-928.DOI:10.1364/OL.29.000926.

[28] Boscolo S,Derevyanko S A,Turitsyn S K.Autosoliton Propagation and Mapping Problem in Optical Fiber Lines with Lumped Nonlinear Devices[J].Phys Rev E,2005,72(1):016601-016604.DOI:10.1103/Phys Rev E.72.016601.

[29] Latkin A I.Simulation of Autosoliton Optical Pulses in High-Speed Fibreoptic Communication Systems[J].Quantum Electronics,2005,35(3):273-277.DOI:10.1070/QE2005 V 035n03ABEH002888.

[30] WEN S C,XIANG Y J,DAI X Y,et al.Theoretical Models for Ultrashort Electromagnetic Pulse Propagation in Nonlinear Metamaterials[J].Phys Rev A,2007,75(3):033815-033823.DOI:10.1103/Phys Rev A.75.033815.

[31] XIANG Y J,DAI X Y,WEN S C,et al.Nonlinear Absorption Due to Linear Loss and Magnetic Permeability in Metamaterials[J].Phys Rev E,2012,85(6):066604-066610.DOI:10.1103/Phys Rev E.85.066604.

[32] ZHAO L,XIE D L,WU X H,et al.Role of the Linear Loss and Nonlinear Magnetic Susceptibility in the Modulation Instability in the Nonlinear Metamaterials[J].J Nonlinear Opt Phys,2013,22(2):1350020.DOI:10.1142/S0218863513500203.

[33] Akhmediev N,Afanasjev V V.Novel Arbitrary-Amplitude Soliton Solutions of the Cubic-Quintic ComplexGinzburg-Landau Equation[J].Phys Rev Lett,1995,75(12):2320-2325.DOI:10.1103/Phys Rev Lett,75.2320.

李金金, 杨荣草, 田晋平, 薛文瑞. 非线性超材料中自孤子的传输特性研究[J]. 量子光学学报, 2016, 22(4): 369. LI Jin-jin, YANG Rong-cao, TIAN Jin-ping, XUE Wen-rui. Studies on Propagation of Autosolitons in Nonlinear Metamaterials[J]. Acta Sinica Quantum Optica, 2016, 22(4): 369.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!