光学学报, 2015, 35 (5): 0506006, 网络出版: 2015-05-05   

温度对双向时分复用光纤时间传递精度的影响

Influence of Temperature on the Precision of Bidirectional TDM Based Fiber-Optic Time Transfer
作者单位
1 上海交通大学区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
2 上海交通大学北斗导航与位置服务上海市重点实验室, 上海 200240
摘要
理论推导了光纤链路双向时延差(TDEV)的稳定度与温度、双向时间间隔、波长间隔,以及距离的关系,并分析了温度对双向时分复用(TDM)光纤时间传递精度的影响。结果表明,随着温度变化幅度、双向时间间隔、以及传输距离的增加,双向TDM 光纤链路时延差的稳定度逐渐变差。典型温度变化情况下,时间间隔小于100 ms时,3000 km 双向TDM 光纤链路时延差的稳定度优于1 ps/d。相同温度变化和距离的情况下,时间间隔小于100 ms的双向TDM 光纤链路时延差的稳定度优于波长间隔为0.1 nm的双向波分复用(WDM)光纤链路。在实验室内,进行了双向TDM 光纤时间传递实验。实验结果表明:室温环境下双向TDM 光纤时间传递系统不对称偏差的均值随光纤长度(2 m~100 km)的变化小于29 ps,接近时间间隔测量仪器的噪底。100 km 光纤双向TDM 光纤时间传递的稳定度优于30 ps/s和20 ps/d。
Abstract
The relationship of bidirectional propagation time deviation of optical fiber link with the temperature, bidirectional time interval, wavelength difference, and fiber length is derived. The influence of temperature on the precision of bidirectional fiber- optic time transfer based on time division multiplexing (TDM) is analyzed theoretically. The results show that the stability of time deviation of bidirectional TDM fiber link is degraded with the increase of the amplitude of temperature change, bidirectional time interval, and fiber length. For typical ambient temperature change, the stability of time deviation of 3000 km TDM fiber link can be less than 1 ps/d when the bidirectional time interval is less than 100 ms. When temperature change and fiber length are same, the stability of time deviation of bidirectional TDM fiber link with a time interval of less than 100 ms is always less than that of wavelength division multiplexing (WDM) fiber link with a wavelength spacing of larger than 0.1 nm. Bidirectional TDM time transfer experiments are carried out in laboratory on different lengths of fiber. The results show that the fluctuation of average asymmetry of TDM time transfer system is less than 29 ps when the fiber length is changed from 2 m to 100 km, close to the noise floor of the adopted time interval counter. The measured stabilities of bidirectional TDM time transfer over 100 km fiber link are better than 30 ps/s and 20 ps/d, respectively.
参考文献

[1] W J Riley. Handbook of Frequency Stability Analysis[M]. US Department of Commerce, National Institute of Standards and Technology, 2008.

[2] M Amemiya, M Imae, Y Fujii, et al.. Simple time and frequency dissemination method using optical fiber network[J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(5): 878-883.

[3] 李晓亚, 朱勇, 卢麟, 等. 高精度光纤时频伺服传递实验研究[J]. 光学学报, 2013, 34(5): 0506004.

    Li Xiaoya, Zhu Yong, Lu Lin, et al.. Study on high precision disciplined time-frequency transferring experiments through optical fiber link[J]. Acta Optica Sinica, 2013, 34(5): 0506004.

[4] O Lopez, A Amy-Klein, M Lours, et al.. Hing-resolution microwave frequency dissemination on an 86-km urban optical link[J]. Appl Phys B, 2010, 98(4): 723-727.

[5] M Fujieda, M Kumagai, T Gotoh, et al.. Ultrastable frequency dissemination via optical fiber at NICT[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(4): 1223-1228.

[6] 卢麟, 吴传信, 朱勇, 等. 125 km 高精度光纤时间传递实验[C]. 第一届中国卫星导航学术年会, 2010.

    Lu Lin, Wu Chuanxin, Zhu Yong, et al.. High accurate time transfer on 125 km fiber[C]. First Session of the China Satellite Navigation Conference, 2010.

[7] 于龙强, 卢麟, 王荣, 等. Sagnac效应对光纤时间传递精度的影响分析[J]. 光学学报, 2013, 33(3): 0306003.

    Yu Longqiang, Lu Lin, Wang Rong, et al.. Analysis of the Sagnac effect and its influnce on the accuracy of the optical fiber time transfer system[J]. Acta Optica Sinica, 2013, 33(3): 0306003.

[8] L Sliwczynski, P Krehlik, A Czubla, et al.. Dissemination of time and RF frequency via a stabilized fibre optic link over a distance of 420 km[J]. Metrologia, 2013, 50(2): 133-145.

[9] O Lopez, A Kanj, P E Pottie, et al.. Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network[J]. Appl Phys B, 2012, 110(1): 3-6.

[10] V Smotlacha, A Kuna, W Mache. Time transfer using fiber links[C]. 24th European Frequency and Time Forum, 2010: 1-8.

[11] S C Ebenhag, P O Hedekvist, P Jarlemark, et al.. Measurements and error sources in time transfer using asynchronous fiber network [J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(7): 1918-1924.

[12] L Hu, G Wu, H Zhang, et al.. A 300-kilometer optical fiber time transfer using bidirectional TDM dissemination[C]. Precise Time and Time Interval(PTTI) Meeting, 2014.

[13] A Steimacher, A N Medina, A C Bento, et al.. The temperature coefficient of the optical path length as a function of the temperature in different optical glasses[J]. Journal of Non-Crystalline Solids, 2004, 348(15): 240-244.

[14] W D Grover, D Stamatlakis. Continuous TDEV calculation for in- situ synchronisation monitoring in SONET/SDH networks[J]. Electron Lett, 1993, 29(16): 1405-1406.

[15] M Calhoun, L R Sydnor, W Dienerl. A Stabilized 100-Megahertz and 1-Gigahertz Reference Frequency Distribution for Cassini Radio Science[R]. IPN Progress Report, 2002: 42-148.

[16] 沈建国, 吴龟灵, 洪泽华, 等. 温度对光纤频率传输系统稳定性的影响及其补偿[J]. 光电子·激光, 2011, 22(3): 377-381.

    Shen Jianguo, Wu Guiling, Hong Zehua, et al.. Influence of temperature on the stability of the fiber-based frequency transmission system and its compensation[J]. Journal of Optoelectronics·Laser, 2011, 22(3): 377-381.

[17] O Lopez, A Amy-Klein, C Daussy, et al.. 86-km optical link with a resolution of 2×10-18 for RF frequency transfer[J]. The European Physical Journal D, 2008, 48(1): 35-41.

黄璜, 吴龟灵, 胡亮, 陈建平. 温度对双向时分复用光纤时间传递精度的影响[J]. 光学学报, 2015, 35(5): 0506006. Huang Huang, Wu Guiling, Hu Liang, Chen Jianping. Influence of Temperature on the Precision of Bidirectional TDM Based Fiber-Optic Time Transfer[J]. Acta Optica Sinica, 2015, 35(5): 0506006.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!