红外技术, 2018, 40 (4): 332, 网络出版: 2018-06-09   

基于MEMS 陀螺仪及压电微摆镜的光机电联合稳像技术

Opto-mechatronics Joint Image Stabilization Based on MEMS Gyroscope and Piezoelectric Micro-pendulum Mirror
作者单位
北京理工大学 光电成像技术与系统教育部重点实验室,北京 100081
摘要
针对光电平台抖动造成图像平移和旋转导致图像模糊的问题,研究了一种基于MEMS 陀螺仪和压电微摆镜的光机电联合稳像实验系统,主要包括MEMS 陀螺仪及控制器、压电微摆镜及控制系统和上位PC 机后处理系统等。通过位于可见光摄像机上的MEMS 陀螺仪及控制器的Kalman 滤波获取当前帧相对参考帧的旋转角度,PC 机同步采集摄像机的视频图像并计算出图像旋转量进行补偿;采用二维灰度投影法对图像二维偏移量进行估计,分离意向运动和随机抖动,得到抖动偏移量,控制成像光路中的压电陶瓷微摆镜进行光机补偿校正;进一步结合参考图像采用数字稳像方法进行第2 次偏移量补偿,实现了对偏移量的大范围和高精度校正,得到清晰图像。实验表明:该系统对角度的稳像精度小于0.4°,对二维平移的补偿精度达到1 个像素,图像帧频达到25 fps,可对存在平移和旋转的抖动图像进行有效的校正。
Abstract
Aiming at the problem that translation and rotation of the image and the image is blurred caused by the photoelectric platform jitter, this paper studies an opto-mechatronics joint image stabilization system based on microelectromechanical system (MEMS) gyroscope and piezoelectric micro-pendulum mirror. The system consists of a MEMS gyroscope and controller, a piezoelectric micro-pendulum mirror and its controlling system, and the host PC post-processing system. The method of obtaining the rotation of the current frame relative to the reference frame was performed by the MEMS gyroscope attached to the photoelectric camera and the controller’s Kalman filter. The PC then synchronously acquired the camera’s video images and calculated the rotation to compensate for jitter. The two-dimensional gray scale projection method was used to estimate the two-dimensional offset of the jittery image. This was performed via separation of the intentional motion from random jitter, hence obtaining the jitter offset. The piezoelectric ceramic micro-pendulum mirror in the imaging optical path was used to perform the optical-mechanical compensation. Furthermore, the digital image stabilizing method was used to perform secondary offset compensation in combination with the reference image. Finally, a clear image with large range and a high-precision of offset correction was obtained. Experimental results showed that the accuracy of the rotation was within 0.4° and the compensating accuracy of the two-dimensional translation was 1 pixel. The system reached a speed of 25 frames per second and was found to correct the translation and rotation of a jittery image effectively.
参考文献

[1] 李浩洋,刘兆军,徐彭梅.浅谈空间光学遥感器稳像技术[J].航天返回与遥感,2010,31(6):52-57.

    LI Haoxiang, LIU Zhaojun, XU Pengmei. An overview on image stabilization method of space-born remote sensing systems[J]. Spacecraft Recovery & Remote Sensing, 2010, 31(6): 52-57.

[2] EDWARDS C G, LEVAY M, GILBRETH C W, et al. The correlation tracker image stabilization system for HRSO[C]//Bulletin of the American Astronomical Society, 1987, 19: 929.

[3] JANSCHEK K, TEHERNYKH V. Optical correlator for image motion compensation in the focal plane of a satellite camera[C]// Proceedings of IFAC, 2001, 34(15): 378-382.

[4] CARMONA M, GóMEZ J M, ROMA D, et al. System model of an image stabilization system[C]//Proc. of SPIE on Astronomical Telescopes & Instrumentation. International Society for Optics and Photonics, 2014, 9150: 91501U.

[5] LIN Z, WU C, YU F, et al. The design of image stabilization control system[C]//Proc. of SPIE, 2012, 8542: 85420R-1.

[6] 王晓东.实时电子稳像技术研究[D].北京:北京理工大学,2015.

    WANG Xiadong. Study on Technology of Real-time Electronic Image Stabilization[D]. Beijing: Beijing Institute of Technology, 2015.

[7] 赖宏焕.船载稳像系统的设计与实现[D].杭州:浙江工业大学,2016.

    LAI Honghuan. Design and Implementation of Shipborne Image Stabilization System[D]. Hangzhou: Zhejiang University of Technology, 2016.

[8] 韩颖,黄剑侠,高原.MEMS陀螺在红外成像系统中的应用[J].红外技术,2015,37(3):248-257.

    HAN Ying, HUANG Jianxia, GAO Yuan. Applications of MEMS gyroscope in infrared imaging systems[J]. Infrared Technology, 2015, 37(3): 248-257.

[9] 范永杰, 陈华. 基于MEMS 陀螺仪的实时电子稳像技术[J]. 红外技术, 2015, 37(9): 724-727. FAN Yongjie, CHEN Hua. Real-time video stabilization system based on MEMS gyroscope[J]. Infrared Technology, 2015, 37(9): 724-727.

[10] 吕波,张涌,黄侃,等.基于四元数法的运动平台红外图像旋转角推导[J].红外技术,2017,39(4):353-371.

    LV Bo, ZHANG Yong, HUANG Kan, et al. The derivation of rotation angle of infrared image in moving platform based on quaternion[J]. Infrared Technology, 2017, 39(4): 353-371.

[11] 胡亮亮.光机稳像的压电陶瓷二维微摆镜及其控制系统设计[D].北京:北京理工大学,2016.

    HU Liangliang. Piezoelectric ceramic two dimensional fast steering mirror of optical mechanical image stabilization and its control system design[D]. Beijing: Beijing Institute of Technology, 2016.

[12] 赖丽君.电子稳像技术研究[D].北京:中国科学院研究生院(光电技术研究所),2016.

    LAI Lijun. Research on Technology of the Electric Video Stability[D]. Beijing: University of Chinese Academy of Sciences, 2016.

[13] LITVIN A, KONRAD J, KARL W C. Probabilistic video stabilization using Kalman filtering and mosaicking[C]//Proceedings of SPIE, 2003, 5022: 663-674.

[14] FLIR. FlyCapture 2.8.3.1 SDK-Windows(64-bit) [EB/OL]. [2016-11-20]. https://www.ptgrey.com/support/downloads.

[15] InvenSense Inc. MPU-6000 and MPU -6050 product specification revision 3.4[EB/OL]. [2017-3-28]. http:// www.invensense.com/wpcontent/ uploads/2015/02/ MPU-6000-Datasheet1.pdf.

雷琼莹, 金伟其, 郭宏, 米凤文, 张旭, 胡亮亮. 基于MEMS 陀螺仪及压电微摆镜的光机电联合稳像技术[J]. 红外技术, 2018, 40(4): 332. LEI Qiongying, JIN Weiqi, GUO Hong, MI Fengwen, ZHANG Xu, HU Liangliang. Opto-mechatronics Joint Image Stabilization Based on MEMS Gyroscope and Piezoelectric Micro-pendulum Mirror[J]. Infrared Technology, 2018, 40(4): 332.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!