光子学报, 2019, 48 (1): 0114003, 网络出版: 2019-01-27  

面向Li原子D1线频率测量应用的掺铒飞秒光纤光梳系统

Er: fiber Femtosecond Optical Frequency Comb Aimed at Measurement of Frequency of D1 Line in Li Atoms
作者单位
1 中国科学院国家授时中心 时间频率基准重点实验室, 西安 710600
2 中国科学院大学 天文与空间科学学院, 北京 100049
3 华东师范大学 精密光谱科学与技术国家重点实验室, 上海, 200062
摘要
报道了自主研制的面向Li原子D1线频率测量应用的掺铒飞秒光纤光学频率梳,包括飞秒激光源, 频率探测及控制单元, 光谱展宽及拍频单元.光纤光梳系统中飞秒激光光源是一套基于非线性偏振旋转锁模机制的掺铒飞秒光纤激光器, 重复频率为196.5 MHz, 中心波长为1 572 nm.利用f-2f法探测载波包络相移频率, 获得信噪比约为40 dB的信号(分辨率带宽300 kHz).改变飞秒激光光源泵浦控制载波包络相移频率、频率稳定度是3.74×10-18/τ1/2; 通过电光晶体和压电陶瓷改变飞秒激光光源腔长来控制重复频率frep、频率稳定度是1.75×10-13/τ1/2.利用高非线性光纤和倍频晶体将光纤光梳直接输出光谱由1 520~1 607 nm扩展到671 nm, 获得了单模功率为208 nW的光信号.与671 nm单频激光拍频产生约为60 dB(分辨率带宽1 Hz)信号, 满足Li原子D1线频率测量实验的需求.
Abstract
A home-made Er: fiber optical frequency comb aimed at measurement of frequency of D1 line in Li atoms was demonstrated.The system includes Femtosecond laser, frep and fceo detection and control, Spectral broaden and Beat unit. Femtosecond laser is a home-made nonlinear-polarization-rotation mode-locked laser, oscillating at around 1 572 nm with a repetition rate of 196.5 MHz. The fceo detection is accomplished by using the f-2f beating method, the signal-to-noise ratio of fceo about 40 dB with 300 kHz. fceo controlled by changing the pump current and its in-loop frequency instability, evaluated by the Allan deviation, is approximately 3.74×10-18/τ1/2;frep controlled by changing the cavity length of femtosecond laser, its in-loop frequency instability is approximately 1.75×10-13/τ1/2. Optical spectrum is broadened and multipliered from infrared 1 520-1 607 nm to 671 nm by using highly nonlinear fiber and MgO: Periodically poled lithium niobate. Finally, obtaining the beat signal between sigle-frequency laser and optical comb about 60 dB with 1 Hz.
参考文献

[1] STEINMETZ T, WILKEN T, ARAUJO-HAUCK C, et al. Laser frequency combs for astronomical observations[J]. Science, 2008, 321(5894): 1335-1337.

[2] BENEDICK A J, CHANG G Q, BIRGE J R, et al. Visible wavelength astro-comb[J]. Optics Express, 2010, 18(18): 19175-19184.

[3] WILKEN T, CURTO G L, PROBST R A, et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level[J]. Nature, 2012, 485(7400): 611-614.

[4] KIM S. Combs ruler[J]. Nature Phtonics, 2009, 3(6): 313-314.

[5] SALVAD Y, SCHUHLER N , LVQUE S. High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source[J]. Applied Optics, 2008, 47(14): 2715-2720.

[6] MINOSHIMA K, MATSUMOTO H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser[J]. Applied Optics, 2000, 39(30): 5512-5517.

[7] NIERING M, HOLZWARTH R, REICHERT J, et al. Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock[J]. Physical Review Letters, 2000, 84(24): 5496-5499.

[8] ECKSTEIN J N, FERGUSON A I, HANSCH T W. High-resolution 2-photon spectroscopy with picosecond light-pulses[J]. Physical Review Letters, 1978, 40(13): 847-850.

[9] UDEM T, REICHERT J, HOLZWARTH R, et al. Accurate measurement of large optical frequency differences with a mode-locked laser[J]. Optics Letters, 1999, 24(13): 881-883.

[10] RANKAJ K, WINDELER R S, STENTZ A J. Efficient visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J].Optics Letters, 2000, 25(1): 25-27.

[11] JONESD J, DIDDAMS S A, RANKA J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288(5466): 635-639.

[12] TAUSER F, LEITENSTORFER A, ZINTH W. Amplified femtosecond pulses from an Er: fiber system: nonlinear pulse shortening and self-referencing detection of the carrier-envelope phase evolution[J]. Optics Express, 2003, 11(6): 594-600.

[13] HOLZWARTH R, ZIMMERMANN M, UDEM T, et al. White-light frequency comb generation with a diode-pumped Cr: LiSAF laser[J]. Optics Letters, 2001, 26(17): 1376-1378.

[14] YAN M, LI W X, YANG K W, et al. High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification[J]. Optics Letters, 2012, 37(9): 1511-1513.

[15] STUMPF M C, PEKAREK S, OEHLER A E H, et al. Self-referencable frequency comb from a 170 fs, 1.5 μm solid-state Laser oscillator[J]. Applied Physics B, 2009, 99(3): 401-408.

[16] WASHBURNB R, FOX R W, NEWBURY N R, et al. Fiber-laser-based frequency comb with a tunable repetition rate[J]. Optics Express, 2004, 12(20): 4999-5004.

[17] DROSTE S, YCAS G, WASHBURN B R, et al. Optical frequency comb generation based on erbium fiber lasers[J]. Nanophotonics, 2016, 5(2): 196-213.

[18] 吴学健,李岩,尉昊赟,等.飞秒光学频率梳在精密测量中的应用[J].激光与光电子学进展,2012,49(3): 030001.

    WU Xue-jian, LI Yan, WEI Hao-yun, et al. Femtosecond optical frequency combs for precision measurement applications[J]. Laser & Optoelectronics Progress, 2012, 49(3): 030001.

[19] 张颜艳, 闫露露, 姜海峰,等.用于锶光钟频率测量的光纤光梳系统研究进展[J].时间频率学报,2017,40(3): 130-136.

    ZHANG Yan-yan, YAN Lu-lu, JIANG Hai-feng, et al. Development of an erbium fiber-based femtosecond optical frequency comb used for frequency measurement of Strontium clock[J]. Journal of Time and Frequency, 2017, 40(3): 130-136.

[20] SANSONETTI C J, SIMIEN C E, GILLASPY J D. Absolute transition frequencies and quantum interference in a frequency comb based measurement of the 6,7Li D lines[J]. Physical Review Letters, 2011, 107(2): 023001.

[21] 武跃龙,李睿,芮扬,等.6Li原子跃迁频率和超精细分裂的精密测量[J].物理学报,2018,67(16): 163200.

    WU Yue-long, LI Rui, RUI Rang, et al. Precise measurement of 6Li transition frequencies and hyperfine splitting[J]. Acta Physica Sinica, 2018, 67(16): 163200.

饶冰洁, 张颜艳, 闫露露, 武跃龙, 张攀, 樊松涛, 郭文阁, 张晓斐, 张首刚, 姜海峰. 面向Li原子D1线频率测量应用的掺铒飞秒光纤光梳系统[J]. 光子学报, 2019, 48(1): 0114003. RAO Bing-jie, ZHANG Yan-yan, YAN Lu-lu, WU Yue-long, ZHANG Pan, FAN Song-tao, GUO Wen-ge, ZHANG Xiao-fei, ZHANG Shou-gang, JIANG Hai-feng. Er: fiber Femtosecond Optical Frequency Comb Aimed at Measurement of Frequency of D1 Line in Li Atoms[J]. ACTA PHOTONICA SINICA, 2019, 48(1): 0114003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!