中国激光, 2020, 47 (1): 0102007, 网络出版: 2020-01-09   

α相织构对激光沉积制造TC4合金力学行为影响研究 下载: 1262次

Effect of α Texture on Mechanical Behavior of TC4 Alloy Fabricated by Laser Deposition Manufacturing
作者单位
1 沈阳航空航天大学航空制造工艺数字化国防重点学科实验室, 辽宁 沈阳 110136
2 沈阳飞机工业(集团)有限公司, 辽宁 沈阳 110034
引用该论文

钦兰云, 金子心, 赵朔, 倪家强, 刘艳梅, 杨光. α相织构对激光沉积制造TC4合金力学行为影响研究[J]. 中国激光, 2020, 47(1): 0102007.

Lanyun Qin, Zixin Jin, Shuo Zhao, Jiaqiang Ni, Yanmei Liu, Guang Yang. Effect of α Texture on Mechanical Behavior of TC4 Alloy Fabricated by Laser Deposition Manufacturing[J]. Chinese Journal of Lasers, 2020, 47(1): 0102007.

参考文献

[1] Li W, Liu J, Wen S F, et al. Crystal orientation, crystallographic texture and phase evolution in the Ti-45Al-2Cr-5Nb alloy processed by selective laser melting[J]. Materials Characterization, 2016, 113: 125-133.

[2] 肖振楠, 刘婷婷, 廖文和, 等. 激光选区熔化成形TC4钛合金热处理后微观组织和力学性能[J]. 中国激光, 2017, 44(9): 0902001.

    Xiao Z N, Liu T T, Liao W H, et al. Microstructure and mechanical properties of TC4 titanium alloy formed by selective laser melting after heat treatment[J]. Chinese Journal of Lasers, 2017, 44(9): 0902001.

[3] Agius D, Kourousis K I, Wallbrink C, et al. Cyclic plasticity and microstructure of as-built SLM Ti-6Al-4V: the effect of build orientation[J]. Materials Science and Engineering: A, 2017, 701: 85-100.

[4] 刘征. 激光熔化沉积制备Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金的疲劳性能[D]. 大连: 大连交通大学, 2014: 28- 30.

    LiuZ. Fatigue properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser melting deposition[D]. Dalian: Dalian Jiaotong University, 2014: 28- 30.

[5] 严振宇, 周庆军, 侯谊飞, 等. 层间停留时间对激光熔化沉积TC11钛合金组织与力学性能的影响[J]. 中国激光, 2018, 45(11): 1102003.

    Yan Z Y, Zhou Q J, Hou Y F, et al. Effect of interlayer residence time on microstructures and mechanical properties of laser melting deposited TC11 titanium alloys[J]. Chinese Journal of Lasers, 2018, 45(11): 1102003.

[6] 李明东. 激光沉积制造TC4钛合金的热处理工艺研究[D]. 沈阳: 沈阳航空航天大学, 2018: 15- 20.

    Li MD. Study on heat treatment process of TC4 titanium alloy by laser deposition manufacturing[D]. Shenyang: Shenyang Aerospace University, 2018: 15- 20.

[7] Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 2015, 87: 309-320.

[8] Zhang Q, Chen J, Zhao Z, et al. Microstructure and anisotropic tensile behavior of laser additive manufactured TC21 titanium alloy[J]. Materials Science and Engineering: A, 2016, 673: 204-212.

[9] Yang J J, Yu H C, Wang Z M, et al. Effect of crystallographic orientation on mechanical anisotropy of selective laser melted Ti-6Al-4V alloy[J]. Materials Characterization, 2017, 127: 137-145.

[10] Neikter M, Woracek R, Maimaitiyili T, et al. Alpha texture variations in additive manufactured Ti-6Al-4V investigated with neutron diffraction[J]. Additive Manufacturing, 2018, 23: 225-234.

[11] 杨义, 徐锋, 黄爱军, 等. 全片层BT18Y钛合金在α+β相区固溶时的显微组织演化[J]. 金属学报, 2005, 41(7): 713-720.

    Yang Y, Xu F, Huang A J, et al. Evolution of microstructure of full lamellar titanium alloy BT18Y solutionized at α +β phase field[J]. Acta Metallrugica Sinica, 2005, 41(7): 713-720.

[12] Waryoba D R, Keist J S, Ranger C, et al. Microtexture in additively manufactured Ti-6Al-4V fabricated using directed energy deposition[J]. Materials Science and Engineering: A, 2018, 734: 149-163.

[13] Bantounas I, Dye D, Lindley T C. The role of microtexture on the faceted fracture morphology in Ti-6Al-4V subjected to high-cycle fatigue[J]. Acta Materialia, 2010, 58(11): 3908-3918.

[14] Bantounas I, Lindley T C, Rugg D, et al. Effect of microtexture on fatigue cracking in Ti-6Al-4V[J]. Acta Materialia, 2007, 55(16): 5655-5665.

[15] 刘觐, 孟利, 朱国辉, 等. 管线钢中晶界取向差特征分布分析[J]. 材料热处理学报, 2014, 35(3): 111-116.

    Liu J, Meng L, Zhu G H, et al. Analysis on misorientation angle distribution of pipeline steels[J]. Transactions of Materials and Heat Treatment, 2014, 35(3): 111-116.

[16] 姬忠硕, 原菁骏, 张麦仓. TC4合金高温拉伸性能及其与织构的关联性[J]. 材料热处理学报, 2018, 39(8): 28-37.

    Ji Z S, Yuan J J, Zhang M C. High temperature tensile properties of TC4 alloy and its relationship with texture[J]. Transactions of Materials and Heat Treatment, 2018, 39(8): 28-37.

[17] 胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 3版. 上海: 上海交通大学出版社, 2010: 25.

    Hu GX, CaiX, Rong YH. Fundamentals of materials science[M]. 3rd ed. Shanghai: Shanghai Jiaotong University Press, 2010: 25.

[18] KouS. 焊接冶金学[M]. 闫久春, 杨建国, 张广军, 译. 2版. 北京: 高等教育出版社, 2012: 164.

    KouS. Welding metallurgy[M]. Yan J C, Yang J G, Zhang G J, Transl. 2nd ed. Beijing: Higher Education Press, 2012: 164.

[19] ChalmersB. Principles of solidification[M] //Low W, Schieber M. Applied solid state physics. Boston, MA: Springer, 1970: 161- 170.

[20] Hasija V, Ghosh S, Mills M J, et al. Deformation and creep modeling in polycrystalline Ti-6Al alloys[J]. Acta Materialia, 2003, 51(15): 4533-4549.

[21] Liu Z, Zhao Z B, Liu J R, et al. Effect of α texture on the tensile deformation behavior of Ti-6Al-4V alloy produced via electron beam rapid manufacturing[J]. Materials Science and Engineering: A, 2019, 742: 508-516.

[22] 石晶, 郭振玺, 隋曼龄. α-Ti在原位透射电镜拉伸变形过程中位错的滑移系确定[J]. 金属学报, 2016, 52(1): 71-77.

    Shi J, Guo Z X, Sui M L. Slip system determination of dislocations in α-Ti during in situ TEM tensile deformation[J]. Acta Metallurgica Sinica, 2016, 52(1): 71-77.

[23] Bantounas I, Dye D, Lindley T C. The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti-6Al-4V[J]. Acta Materialia, 2009, 57(12): 3584-3595.

钦兰云, 金子心, 赵朔, 倪家强, 刘艳梅, 杨光. α相织构对激光沉积制造TC4合金力学行为影响研究[J]. 中国激光, 2020, 47(1): 0102007. Lanyun Qin, Zixin Jin, Shuo Zhao, Jiaqiang Ni, Yanmei Liu, Guang Yang. Effect of α Texture on Mechanical Behavior of TC4 Alloy Fabricated by Laser Deposition Manufacturing[J]. Chinese Journal of Lasers, 2020, 47(1): 0102007.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!