Frontiers of Optoelectronics, 2019, 12 (2): 117–147, 网络出版: 2019-11-14  

Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiationenhanced-emission-of-fluorescence: a review

Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiationenhanced-emission-of-fluorescence: a review
作者单位
1 The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
2 State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
3 The Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100037, China
引用该论文

Kang LIU, Pingjie HUANG, Xi-Cheng ZHANG. Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiationenhanced-emission-of-fluorescence: a review[J]. Frontiers of Optoelectronics, 2019, 12(2): 117–147.

Kang LIU, Pingjie HUANG, Xi-Cheng ZHANG. Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiationenhanced-emission-of-fluorescence: a review[J]. Frontiers of Optoelectronics, 2019, 12(2): 117–147.

参考文献

[1] Zhang X C, Xu J. Introduction to THzWave Photonics. New York: Springer, 2010

[2] Zhang X C. Teaching note, 2013

[3] Fixsen D J, Cheng E S, Gales J M, Mather J C, Shafer R A,Wright E L. The cosmic microwave background spectrum from the full cobefiras data set. Astrophysical Journal, 1996, 473(2): 576–587

[4] Leisawitz D T, Danchi W C, DiPirro M J, Feinberg L D, Gezari D Y, Hagopian M, Langer W D, Mather J C, Moseley S H, Shao M, Silverberg R F, Staquhn J G, Swain M R, Yorke H W, Zhang X L. Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers. In: Proceedings of SPIE 4013, UV, Optical, and IR Space Telescopes and Instruments. International Society for Optics and Photonics, 2000, 36–47

[5] Phillips T G, Keene J. Submillimeter astronomy (heterodyne spectroscopy). Proceedings of the IEEE, 1992, 80(11): 1662–1678

[6] Majumdar A K. Advanced Free Space Optics (FSO): A Systems Approach. New York: Springer, 2014

[7] Liu H B, Chen Y, Bastiaans G J, Zhang X C. Detection and identification of explosive RDX by THz diffuse reflection spectroscopy. Optics Express, 2006, 14(1): 415–423

[8] Leahy-Hoppa M R, Fitch M J, Zheng X, Hayden L M, Osiander R. Wideband terahertz spectroscopy of explosives. Chemical Physics Letters, 2007, 434(4–6): 227–230

[9] Davies A G, Burnett A D, Fan W, Linfield E H, Cunningham J E. Terahertz spectroscopy of explosives and drugs. Materials Today, 2008, 11(3): 18–26

[10] Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D. Thz imaging and sensing for security applications—explosives, weapons and drugs. Semiconductor Science and Technology, 2005, 20(7): S266–S280

[11] Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105

[12] Roobottom C A, Mitchell G, Morgan-Hughes G. Radiationreduction strategies in cardiac computed tomographic angiography. Clinical Radiology, 2010, 65(11): 859–867

[13] Alexandrov B S, Gelev V, Bishop A R, Usheva A, Rasmussen K O. DNA breathing dynamics in the presence of a terahertz field. Physics Letters A, 2010, 374(10): 1214–1217

[14] Siegel P H, Pikov V. Impact of low intensity millimetre waves on cell functions. Electronics Letters, 2010, 46(26): 70–72

[15] Chen J, Chen Y, Zhao H, Bastiaans G J, Zhang X C. Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz. Optics Express, 2007, 15(19): 12060–12067

[16] Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science. Nature Photonics, 2017, 11(1): 16–18

[17] Lee Y S. Principles of Terahertz Science and Technology. New York: Springer, 2009

[18] Auston D H. Picosecond optoelectronic switching and gating in silicon. Applied Physics Letters, 1975, 26(3): 101–103

[19] Tani M, Matsuura S, Sakai K, Nakashima S. Emission characteristics of photoconductive antennas based on low-temperaturegrown GaAs and semi-insulating GaAs. Applied Optics, 1997, 36(30): 7853–7859

[20] Auston D H, Cheung K P, Smith P R. Picosecond photoconducting hertzian dipoles. Applied Physics Letters, 1984, 45(3): 284–286

[21] Ropagnol X, Khorasaninejad M, Raeiszadeh M, Safavi-Naeini S, Bouvier M, Coté C Y, Laramée A, Reid M, Gauthier M A, Ozaki T. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas. Optics Express, 2016, 24(11): 11299–11311

[22] Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X, Ozaki T. Intense terahertz radiation and their applications. Journal of Optics, 2016, 18(9): 093004

[23] Boyd R W. Nonlinear Optics. Oxford: Elsevier, 2008

[24] Kitaeva G Kh. Terahertz generation by means of optical lasers. Laser Physics Letters, 2008, 5(8): 559–576

[25] Reimann K. Table-top sources of ultrashort Thz pulses. Reports on Progress in Physics, 2007, 70(10): 1597–1632

[26] Rice A, Jin Y, Ma X F, Zhang X C, Bliss D, Larkin J, Alexander M. Terahertz optical rectification from<110>zinc-blende crystals. Applied Physics Letters, 1994, 64(11): 1324–1326

[27] Yang K H, Richards P L, Shen Y R. Generation of far-infrared radiation by picosecond light pulses in LiNbO3. Applied Physics Letters, 1971, 19(9): 320–323

[28] Hebling J, Almasi G, Kozma I, Kuhl J. Velocity matching by pulse front tilting for large area THz-pulse generation. Optics Express, 2002, 10(21): 1161–1166

[29] Hebling J, Yeh K L, Hoffmann M C, Bartal B, Nelson K A. Generation of high-power terahertz pulses by tilted pulse-front excitation and their application possibilities. Journal of the Optical Society of America B, Optical Physics, 2008, 25(7): B6–B19

[30] Fülop J A, Pálfalvi L, Klingebiel S, Almási G, Krausz F, Karsch S, Hebling J. Generation of sub-mJ terahertz pulses by optical rectification. Optics Letters, 2012, 37(4): 557–559

[31] Hirori H, Doi A, Blanchard F, Tanaka K. Single-cycle terahertz pulses with amplitudes exceeding 1 mV/cm generated by optical rectification in LiNbO3. Applied Physics Letters, 2011, 98(9): 091106

[32] Zhang X C, Ma X F, Jin Y, Lu T M, Boden E P, Phelps P D, Stewart K R, Yakymyshyn C P. Terahertz optical rectification from a nonlinear organic crystal. Applied Physics Letters, 1992, 61(26): 3080–3082

[33] Hauri C P, Ruchert C, Vicario C, Ardana F. Strong-field singlecycle THz pulses generated in an organic crystal. Applied Physics Letters, 2011, 99(16): 161116

[34] Shalaby M, Hauri C P. Demonstration of a low-frequency threedimensional terahertz bullet with extreme brightness. Nature Communications, 2015, 6(1): 5976

[35] Hamster H, Sullivan A, Gordon S, White W, Falcone R W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728

[36] Cook D J, Hochstrasser RM. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212

[37] Dai J, Clough B, Ho I C, Lu X, Liu J, Zhang X C. Recent progresses in terahertz wave air photonics. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 274–281

[38] Kim K Y, Taylor A J, Glownia J H, Rodriguez G. Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nature Photonics, 2008, 2(10): 605–609

[39] Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams. Applied Physics Letters, 1995, 67(24): 3523–3525

[40] Nuss M C, Auston D H, Capasso F. Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide. Physical Review Letters, 1987, 58(22): 2355–2358

[41] van Exter M, Fattinger C, Grischkowsky D. Terahertz time-domain spectroscopy of water vapor. Optics Letters, 1989, 14(20): 1128–1130

[42] Morales G J, Lee Y C. Ponderomotive-force effects in a nonuniform plasma. Physical Review Letters, 1974, 33(17): 1016–1019

[43] Liu K, Buccheri F, Zhang X C. Thz science and technology of micro-plasma. Physics (Chinese Wuli), 2015, 44: 497–502

[44] Hamster H, Sullivan A, Gordon S, Falcone R W. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1994, 49(1): 671–677

[45] Loffler T, Jacob F, Roskos H G. Generation of terahertz pulses by photoionization of electrically biased air. Applied Physics Letters, 2000, 77(3): 453–455

[46] D’Amico C, Houard A, Franco M, Prade B, Mysyrowicz A, Couairon A, Tikhonchuk V T. Conical forward THz emission from femtosecond-laser-beam filamentation in air. Physical Review Letters, 2007, 98(23): 235002

[47] Amico C D, Houard A, Akturk S, Liu Y, Le Bloas J, Franco M, Prade B, Couairon A, Tikhonchuk V T, Mysyrowicz A. Forward THz radiation emission by femtosecond filamentation in gases: theory and experiment. New Journal of Physics, 2008, 10(1): 013015

[48] Buccheri F, Zhang X C. Terahertz emission from laser induced microplasma in ambient air. Optica, 2015, 2(4): 366–369

[49] Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambient air. Physical Review Letters, 2006, 96(7): 075005

[50] Kress M, Loffler T, Eden S, Thomson M, Roskos H G. Terahertzpulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves. Optics Letters, 2004, 29(10): 1120–1122

[51] Clough B, Dai J M, Zhang X C. Laser air photonics: covering the “terahertz gap” and beyond. Zhongguo Wuli Xuekan, 2014, 52(1): 416–430

[52] Chen Y, Yamaguchi M, Wang M, Zhang X C. Terahertz pulse generation from noble gases. Applied Physics Letters, 2007, 91(25): 251116

[53] Dai J, Liu J, Zhang X C. Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 183–190

[54] Dai J, Karpowicz N, Zhang X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters, 2009, 103(2): 023001

[55] Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584

[56] Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases. Physical Review Letters, 2009, 102(9): 093001

[57] You Y S, Oh T I, Kim K Y. Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments. Physical Review Letters, 2012, 109(18): 183902

[58] Blank V, Thomson M D, Roskos H G. Spatio-spectral characteristics of ultra-broadband THz emission from two-colour photo excited gas plasmas and their impact for nonlinear spectroscopy. New Journal of Physics, 2013, 15(7): 075023

[59] Manceau J M, Massaouti M, Tzortzakis S. Strong terahertz emission enhancement via femtosecond laser filament concatenation in air. Optics Letters, 2010, 35(14): 2424–2426

[60] Liu J, Zhang X C. Terahertz-radiation-enhanced emission of fluorescence from gas plasma. Physical Review Letters, 2009, 103(23): 235002

[61] Liu J, Dai J, Chin S L, Zhang X C. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nature Photonics, 2010, 4(9): 627–631

[62] Clough B, Liu J, Zhang X C. Laser-induced photoacoustics influenced by single-cycle terahertz radiation. Optics Letters, 2010, 35(21): 3544–3546

[63] Cook D J, Chen J X, Morlino E A, Hochstrasser R M. Terahertz field-induced second-harmonic generation measurements of liquid dynamics. Chemical Physics Letters, 1999, 309(3–4): 221–228

[64] Dai J, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903

[65] Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Applied Physics Letters, 2008, 92(1): 011131

[66] Clough B, Dai J, Zhang X C. Laser air photonics: beyond the terahertz gap. Materials Today, 2012, 15(1–2): 50–58

[67] Lu X, Karpowicz N, Chen Y, Zhang X C. Systematic study of broadband terahertz gas sensor. Applied Physics Letters, 2008, 93(26): 261106

[68] Zalkovskij M, Zoffmann Bisgaard C, Novitsky A, Malureanu R, Savastru D, Popescu A, Uhd Jepsen P, Lavrinenko A V. Ultrabroadband terahertz spectroscopy of chalcogenide glasses. Applied Physics Letters, 2012, 100(3): 031901

[69] D’Angelo F, Mics Z, Bonn M, Turchinovich D. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics. Optics Express, 2014, 22(10): 12475–12485

[70] Yang Y, Mandehgar M, Grischkowsky D R. Broadband THz pulse transmission through the atmosphere. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 264–273

[71] Sun X, Buccheri F, Dai J, Zhang X C. Review of THz wave air photonics. In: Proceedings of SPIE 8562, Infrared, Millimeter-Wave, and Terahertz Technologies II. SPIE, 2012, 856202

[72] Clough B, Liu J, Zhang X C. “All air-plasma” terahertz spectroscopy. Optics Letters, 2011, 36(13): 2399–2401

[73] Berry M V, Balazs N L. Nonspreading wave packets. American Journal of Physics, 1979, 47(3): 264–267

[74] Unnikrishnan K, Rau A R P. Uniqueness of the Airy packet in quantum mechanics. American Journal of Physics, 1996, 64(8): 1034–1035

[75] Schiff L I. Quantum Mechanics. Oxford: McGraw-Hill Education (India) Pvt Limited, 1968

[76] Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory. Journal of the Optical Society of America A, Optics and Image Science, 1987, 4(4): 651–654

[77] Durnin J, Miceli J Jr, Eberly J H. Diffraction-free beams. Physical Review Letters, 1987, 58(15): 1499–1501

[78] McGloin D, Dholakia K. Bessel beams: diffraction in a new light. Contemporary Physics, 2005, 46(1): 15–28

[79] Gutiérrez-Vega J C, Iturbe-Castillo M D, Chávez-Cerda S. Alternative formulation for invariant optical fields: Mathieu beams. Optics Letters, 2000, 25(20): 1493–1495

[80] Bandres M A, Gutiérrez-Vega J C. Ince-Gaussian beams. Optics Letters, 2004, 29(2): 144–146

[81] Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams. Optics Letters, 2007, 32(8): 979–981

[82] Siviloglou G A, Broky J, Dogariu A, Christodoulides D N. Observation of accelerating Airy beams. Physical Review Letters, 2007, 99(21): 213901

[83] Abdollahpour D, Suntsov S, Papazoglou D G, Tzortzakis S. Spatiotemporal Airy light bullets in the linear and nonlinear regimes. Physical Review Letters, 2010, 105(25): 253901

[84] Chong A, Renninger W H, Christodoulides D N, Wise F W. Airy–Bessel wave packets as versatile linear light bullets. Nature Photonics, 2010, 4(2): 103–106

[85] Papazoglou D G, Efremidis N K, Christodoulides D N, Tzortzakis S. Observation of abruptly auto focusing waves. Optics Letters, 2011, 6(10): 1842–1844

[86] Efremidis N K, Christodoulides D N. Abruptly autofocusing waves. Optics Letters, 2010, 35(23): 4045–4047

[87] Papazoglou D G. Personal communication, 2015

[88] Chremmos I, Efremidis N K, Christodoulides D N. Pre-engineered abruptly autofocusing beams. Optics Letters, 2011, 36(10): 1890–1892

[89] Liu K, Koulouklidis A D, Papazoglou D G, Tzortzakis S, Zhang X C. Enhanced terahertz wave emission from air-plasma tailored by abruptly autofocusing laser beams. Optica, 2016, 3(6): 605–608

[90] Koulouklidis A D, Papazoglou D G, Fedorov V Y, Tzortzakis S. Phase memory preserving harmonics from abruptly autofocusing beams. Physical Review Letters, 2017, 119(22): 223901

[91] Papazoglou D G, Fedorov V Y, Tzortzakis S. Janus waves. Optics Letters, 2016, 41(20): 4656–4659

[92] Panagiotopoulos P, Papazoglou D G, Couairon A, Tzortzakis S. Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets. Nature Communications, 2013, 4(1): 2622

[93] Polynkin P, Kolesik M, Roberts A, Faccio D, Di Trapani P, Moloney J. Generation of extended plasma channels in air using femtosecond Bessel beams. Optics Express, 2008, 16(20): 15733–15740

[94] Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N. Curved plasma channel generation using ultraintense Airy beams. Science, 2009, 324(5924): 229–232

[95] Scheller M, Mills M S, Miri M A, ChengW, Moloney J V, Kolesik M, Polynkin P, Christodoulides D N. Externally refuelled optical filaments. Nature Photonics, 2014, 8(4): 297–301

[96] Matsubara E, Nagai M, Ashida M. Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses. Applied Physics Letters, 2012, 101(1): 011105

[97] Manceau J M, Averchi A, Bonaretti F, Faccio D, Di Trapani P, Couairon A, Tzortzakis S. Terahertz pulse emission optimization from tailored femtosecond laser pulse filamentation in air. Optics Letters, 2009, 34(14): 2165–2167

[98] Zhao J, Guo L, Chu W, Zeng B, Gao H, Cheng Y, Liu W. Simple method to enhance terahertz radiation from femtosecond laser filament array with a step phase plate. Optics Letters, 2015, 40(16): 3838–3841

[99] Chu X. Evolution of an Airy beam in turbulence. Optics Letters, 2011, 36(14): 2701–2703

[100] Dolev I, Kaminer I, Shapira A, Segev M, Arie A. Experimental observation of self-accelerating beams in quadratic nonlinear media. Physical Review Letters, 2012, 108(11): 113903

[101] Dai J, Zhang X C. Terahertz wave generation from thin metal films excited by asymmetrical optical fields. Optics Letters, 2014, 39(4): 777–780

[102] Roskos H G, Thomson M D, Kreb M, Loffler T. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications. Laser & Photonics Reviews, 2007, 1(4): 349–368

[103] Oh T I, You Y S, Jhajj N, Rosenthal E W, Milchberg H M, Kim K Y. Scaling and saturation of high-power terahertz radiation generation in two-color laser filamentation. Applied Physics Letters, 2013, 102(20): 201113

[104] Gorodetsky A, Koulouklidis A D, Massaouti M, Tzortzakis S. Physics of the conical broadband terahertz emission from twocolor laser-induced plasma filaments. Physical Review A., 2014, 89(3): 033838

[105] Talebpour A, Petit S, Chin S L. Re-focusing during the propagation of a focused femtosecond Ti:sapphire laser pulse in air. Optics Communications, 1999, 171(4–6): 285–290

[106] Clough B, Karpowicz N, Zhang X C. Modulation of electron trajectories inside a filament for single-scan coherent terahertz wave detection. Applied Physics Letters, 2012, 100(12): 121105

[107] Buccheri F, Liu K, Zhang X C. Terahertz radiation enhanced emission of fluorescence from elongated plasmas and microplasmas in the counter-propagating geometry. Applied Physics Letters, 2017, 111(9): 091103

[108] Martin F, Mawassi R, Vidal F, Gallimberti I, Comtois D, Pepin H, Kieffer J C, Mercure H P. Spectroscopic study of ultrashort pulse laser breakdown plasmas in air. Applied Spectroscopy, 2002, 56(11): 1444–1452

[109] Liu J, Zhang X C. Enhancement of laser-induced fluorescence by intense terahertz pulses in gases. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 229–236

[110] Liu J, Dai J, Zhang X C. Ultrafast broadband terahertz waveform measurement utilizing ultraviolet plasma photoemission. Journal of the Optical Society of America B, Optical Physics, 2011, 28(4): 796–804

, , . Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiationenhanced-emission-of-fluorescence: a review[J]. Frontiers of Optoelectronics, 2019, 12(2): 117–147. Kang LIU, Pingjie HUANG, Xi-Cheng ZHANG. Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiationenhanced-emission-of-fluorescence: a review[J]. Frontiers of Optoelectronics, 2019, 12(2): 117–147.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!