Frontiers of Optoelectronics, 2019, 12 (2): 117–147, 网络出版: 2019-11-14  

Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiationenhanced-emission-of-fluorescence: a review

Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiationenhanced-emission-of-fluorescence: a review
作者单位
1 The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
2 State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
3 The Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100037, China
摘要
Abstract
With the increasing demands for remote spectroscopy in many fields ranging from homeland security to environmental monitoring, terahertz (THz) spectroscopy has drawn a significant amount of attention because of its capability to acquire chemical spectral signatures non-invasively. However, advanced THz remote sensing techniques are obstructed by quite a few factors, such as THz waves being strongly absorbed by water vapor in the ambient air, difficulty to generate intense broadband coherent THz source remotely, and hard to transmit THz waveform information remotely without losing the signal to noise ratio, etc. In this review, after introducing different THz air-photonics techniques to overcome the difficulties of THz remote sensing, we focus mainly on theoretical and experimental methods to improve THz generation and detection performance for the purpose of remote sensing through tailoring the generation and detection media, air-plasma. For the THz generation part, auto-focusing ring-Airy beam was introduced to enhance the THz wave generation yield from two-color laser induced air plasma. By artificially modulated exotic wave packets, it is exhibited that abruptly auto-focusing beam induced air-plasma can give an up to 5.3-time-enhanced THz wave pulse energy compared to normal Gaussian beam induced plasma under the same conditions. At the same time, a red shift on the THz emission spectrum is also observed. A simulation using an interference model to qualitatively describe these behaviors has be developed. For the THz detection part, the results of THz remote sensing at 30 m using THz-radiation-enhanced-emission of- fluorescence (THz-REEF) technique are demonstrated, which greatly improved from the 10 m demonstration last reported. The THz-REEF technique in the counterpropagation geometry was explored, which is proved to be more practical for stand-off detections than copropagation geometry. We found that in the counterpropagating geometry the maximum amplitude of the REEF signal is comparable to that in the co-propagating case, whereas the time resolved REEF trace significantly changes. By performing the study with different plasmas, we observed that in the counter-propagating geometry the shape of the REEF trace depends strongly on the plasma length and electron density. A new theoretical model suggesting that the densest volume of the plasma does not contribute to the fluorescence enhancement is proposed to reproduce the experimental measurements. Our results further the understanding of the THz-plasma interaction and highlight the potential of THz-REEF technique in the plasma detection applications.
参考文献

[1] Zhang X C, Xu J. Introduction to THzWave Photonics. New York: Springer, 2010

[2] Zhang X C. Teaching note, 2013

[3] Fixsen D J, Cheng E S, Gales J M, Mather J C, Shafer R A,Wright E L. The cosmic microwave background spectrum from the full cobefiras data set. Astrophysical Journal, 1996, 473(2): 576–587

[4] Leisawitz D T, Danchi W C, DiPirro M J, Feinberg L D, Gezari D Y, Hagopian M, Langer W D, Mather J C, Moseley S H, Shao M, Silverberg R F, Staquhn J G, Swain M R, Yorke H W, Zhang X L. Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers. In: Proceedings of SPIE 4013, UV, Optical, and IR Space Telescopes and Instruments. International Society for Optics and Photonics, 2000, 36–47

[5] Phillips T G, Keene J. Submillimeter astronomy (heterodyne spectroscopy). Proceedings of the IEEE, 1992, 80(11): 1662–1678

[6] Majumdar A K. Advanced Free Space Optics (FSO): A Systems Approach. New York: Springer, 2014

[7] Liu H B, Chen Y, Bastiaans G J, Zhang X C. Detection and identification of explosive RDX by THz diffuse reflection spectroscopy. Optics Express, 2006, 14(1): 415–423

[8] Leahy-Hoppa M R, Fitch M J, Zheng X, Hayden L M, Osiander R. Wideband terahertz spectroscopy of explosives. Chemical Physics Letters, 2007, 434(4–6): 227–230

[9] Davies A G, Burnett A D, Fan W, Linfield E H, Cunningham J E. Terahertz spectroscopy of explosives and drugs. Materials Today, 2008, 11(3): 18–26

[10] Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D. Thz imaging and sensing for security applications—explosives, weapons and drugs. Semiconductor Science and Technology, 2005, 20(7): S266–S280

[11] Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105

[12] Roobottom C A, Mitchell G, Morgan-Hughes G. Radiationreduction strategies in cardiac computed tomographic angiography. Clinical Radiology, 2010, 65(11): 859–867

[13] Alexandrov B S, Gelev V, Bishop A R, Usheva A, Rasmussen K O. DNA breathing dynamics in the presence of a terahertz field. Physics Letters A, 2010, 374(10): 1214–1217

[14] Siegel P H, Pikov V. Impact of low intensity millimetre waves on cell functions. Electronics Letters, 2010, 46(26): 70–72

[15] Chen J, Chen Y, Zhao H, Bastiaans G J, Zhang X C. Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz. Optics Express, 2007, 15(19): 12060–12067

[16] Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science. Nature Photonics, 2017, 11(1): 16–18

[17] Lee Y S. Principles of Terahertz Science and Technology. New York: Springer, 2009

[18] Auston D H. Picosecond optoelectronic switching and gating in silicon. Applied Physics Letters, 1975, 26(3): 101–103

[19] Tani M, Matsuura S, Sakai K, Nakashima S. Emission characteristics of photoconductive antennas based on low-temperaturegrown GaAs and semi-insulating GaAs. Applied Optics, 1997, 36(30): 7853–7859

[20] Auston D H, Cheung K P, Smith P R. Picosecond photoconducting hertzian dipoles. Applied Physics Letters, 1984, 45(3): 284–286

[21] Ropagnol X, Khorasaninejad M, Raeiszadeh M, Safavi-Naeini S, Bouvier M, Coté C Y, Laramée A, Reid M, Gauthier M A, Ozaki T. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas. Optics Express, 2016, 24(11): 11299–11311

[22] Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X, Ozaki T. Intense terahertz radiation and their applications. Journal of Optics, 2016, 18(9): 093004

[23] Boyd R W. Nonlinear Optics. Oxford: Elsevier, 2008

[24] Kitaeva G Kh. Terahertz generation by means of optical lasers. Laser Physics Letters, 2008, 5(8): 559–576

[25] Reimann K. Table-top sources of ultrashort Thz pulses. Reports on Progress in Physics, 2007, 70(10): 1597–1632

[26] Rice A, Jin Y, Ma X F, Zhang X C, Bliss D, Larkin J, Alexander M. Terahertz optical rectification from<110>zinc-blende crystals. Applied Physics Letters, 1994, 64(11): 1324–1326

[27] Yang K H, Richards P L, Shen Y R. Generation of far-infrared radiation by picosecond light pulses in LiNbO3. Applied Physics Letters, 1971, 19(9): 320–323

[28] Hebling J, Almasi G, Kozma I, Kuhl J. Velocity matching by pulse front tilting for large area THz-pulse generation. Optics Express, 2002, 10(21): 1161–1166

[29] Hebling J, Yeh K L, Hoffmann M C, Bartal B, Nelson K A. Generation of high-power terahertz pulses by tilted pulse-front excitation and their application possibilities. Journal of the Optical Society of America B, Optical Physics, 2008, 25(7): B6–B19

[30] Fülop J A, Pálfalvi L, Klingebiel S, Almási G, Krausz F, Karsch S, Hebling J. Generation of sub-mJ terahertz pulses by optical rectification. Optics Letters, 2012, 37(4): 557–559

[31] Hirori H, Doi A, Blanchard F, Tanaka K. Single-cycle terahertz pulses with amplitudes exceeding 1 mV/cm generated by optical rectification in LiNbO3. Applied Physics Letters, 2011, 98(9): 091106

[32] Zhang X C, Ma X F, Jin Y, Lu T M, Boden E P, Phelps P D, Stewart K R, Yakymyshyn C P. Terahertz optical rectification from a nonlinear organic crystal. Applied Physics Letters, 1992, 61(26): 3080–3082

[33] Hauri C P, Ruchert C, Vicario C, Ardana F. Strong-field singlecycle THz pulses generated in an organic crystal. Applied Physics Letters, 2011, 99(16): 161116

[34] Shalaby M, Hauri C P. Demonstration of a low-frequency threedimensional terahertz bullet with extreme brightness. Nature Communications, 2015, 6(1): 5976

[35] Hamster H, Sullivan A, Gordon S, White W, Falcone R W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728

[36] Cook D J, Hochstrasser RM. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212

[37] Dai J, Clough B, Ho I C, Lu X, Liu J, Zhang X C. Recent progresses in terahertz wave air photonics. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 274–281

[38] Kim K Y, Taylor A J, Glownia J H, Rodriguez G. Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nature Photonics, 2008, 2(10): 605–609

[39] Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams. Applied Physics Letters, 1995, 67(24): 3523–3525

[40] Nuss M C, Auston D H, Capasso F. Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide. Physical Review Letters, 1987, 58(22): 2355–2358

[41] van Exter M, Fattinger C, Grischkowsky D. Terahertz time-domain spectroscopy of water vapor. Optics Letters, 1989, 14(20): 1128–1130

[42] Morales G J, Lee Y C. Ponderomotive-force effects in a nonuniform plasma. Physical Review Letters, 1974, 33(17): 1016–1019

[43] Liu K, Buccheri F, Zhang X C. Thz science and technology of micro-plasma. Physics (Chinese Wuli), 2015, 44: 497–502

[44] Hamster H, Sullivan A, Gordon S, Falcone R W. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1994, 49(1): 671–677

[45] Loffler T, Jacob F, Roskos H G. Generation of terahertz pulses by photoionization of electrically biased air. Applied Physics Letters, 2000, 77(3): 453–455

[46] D’Amico C, Houard A, Franco M, Prade B, Mysyrowicz A, Couairon A, Tikhonchuk V T. Conical forward THz emission from femtosecond-laser-beam filamentation in air. Physical Review Letters, 2007, 98(23): 235002

[47] Amico C D, Houard A, Akturk S, Liu Y, Le Bloas J, Franco M, Prade B, Couairon A, Tikhonchuk V T, Mysyrowicz A. Forward THz radiation emission by femtosecond filamentation in gases: theory and experiment. New Journal of Physics, 2008, 10(1): 013015

[48] Buccheri F, Zhang X C. Terahertz emission from laser induced microplasma in ambient air. Optica, 2015, 2(4): 366–369

[49] Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambient air. Physical Review Letters, 2006, 96(7): 075005

[50] Kress M, Loffler T, Eden S, Thomson M, Roskos H G. Terahertzpulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves. Optics Letters, 2004, 29(10): 1120–1122

[51] Clough B, Dai J M, Zhang X C. Laser air photonics: covering the “terahertz gap” and beyond. Zhongguo Wuli Xuekan, 2014, 52(1): 416–430

[52] Chen Y, Yamaguchi M, Wang M, Zhang X C. Terahertz pulse generation from noble gases. Applied Physics Letters, 2007, 91(25): 251116

[53] Dai J, Liu J, Zhang X C. Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 183–190

[54] Dai J, Karpowicz N, Zhang X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters, 2009, 103(2): 023001

[55] Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584

[56] Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases. Physical Review Letters, 2009, 102(9): 093001

[57] You Y S, Oh T I, Kim K Y. Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments. Physical Review Letters, 2012, 109(18): 183902

[58] Blank V, Thomson M D, Roskos H G. Spatio-spectral characteristics of ultra-broadband THz emission from two-colour photo excited gas plasmas and their impact for nonlinear spectroscopy. New Journal of Physics, 2013, 15(7): 075023

[59] Manceau J M, Massaouti M, Tzortzakis S. Strong terahertz emission enhancement via femtosecond laser filament concatenation in air. Optics Letters, 2010, 35(14): 2424–2426

[60] Liu J, Zhang X C. Terahertz-radiation-enhanced emission of fluorescence from gas plasma. Physical Review Letters, 2009, 103(23): 235002

[61] Liu J, Dai J, Chin S L, Zhang X C. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nature Photonics, 2010, 4(9): 627–631

[62] Clough B, Liu J, Zhang X C. Laser-induced photoacoustics influenced by single-cycle terahertz radiation. Optics Letters, 2010, 35(21): 3544–3546

[63] Cook D J, Chen J X, Morlino E A, Hochstrasser R M. Terahertz field-induced second-harmonic generation measurements of liquid dynamics. Chemical Physics Letters, 1999, 309(3–4): 221–228

[64] Dai J, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903

[65] Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Applied Physics Letters, 2008, 92(1): 011131

[66] Clough B, Dai J, Zhang X C. Laser air photonics: beyond the terahertz gap. Materials Today, 2012, 15(1–2): 50–58

[67] Lu X, Karpowicz N, Chen Y, Zhang X C. Systematic study of broadband terahertz gas sensor. Applied Physics Letters, 2008, 93(26): 261106

[68] Zalkovskij M, Zoffmann Bisgaard C, Novitsky A, Malureanu R, Savastru D, Popescu A, Uhd Jepsen P, Lavrinenko A V. Ultrabroadband terahertz spectroscopy of chalcogenide glasses. Applied Physics Letters, 2012, 100(3): 031901

[69] D’Angelo F, Mics Z, Bonn M, Turchinovich D. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics. Optics Express, 2014, 22(10): 12475–12485

[70] Yang Y, Mandehgar M, Grischkowsky D R. Broadband THz pulse transmission through the atmosphere. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 264–273

[71] Sun X, Buccheri F, Dai J, Zhang X C. Review of THz wave air photonics. In: Proceedings of SPIE 8562, Infrared, Millimeter-Wave, and Terahertz Technologies II. SPIE, 2012, 856202

[72] Clough B, Liu J, Zhang X C. “All air-plasma” terahertz spectroscopy. Optics Letters, 2011, 36(13): 2399–2401

[73] Berry M V, Balazs N L. Nonspreading wave packets. American Journal of Physics, 1979, 47(3): 264–267

[74] Unnikrishnan K, Rau A R P. Uniqueness of the Airy packet in quantum mechanics. American Journal of Physics, 1996, 64(8): 1034–1035

[75] Schiff L I. Quantum Mechanics. Oxford: McGraw-Hill Education (India) Pvt Limited, 1968

[76] Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory. Journal of the Optical Society of America A, Optics and Image Science, 1987, 4(4): 651–654

[77] Durnin J, Miceli J Jr, Eberly J H. Diffraction-free beams. Physical Review Letters, 1987, 58(15): 1499–1501

[78] McGloin D, Dholakia K. Bessel beams: diffraction in a new light. Contemporary Physics, 2005, 46(1): 15–28

[79] Gutiérrez-Vega J C, Iturbe-Castillo M D, Chávez-Cerda S. Alternative formulation for invariant optical fields: Mathieu beams. Optics Letters, 2000, 25(20): 1493–1495

[80] Bandres M A, Gutiérrez-Vega J C. Ince-Gaussian beams. Optics Letters, 2004, 29(2): 144–146

[81] Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams. Optics Letters, 2007, 32(8): 979–981

[82] Siviloglou G A, Broky J, Dogariu A, Christodoulides D N. Observation of accelerating Airy beams. Physical Review Letters, 2007, 99(21): 213901

[83] Abdollahpour D, Suntsov S, Papazoglou D G, Tzortzakis S. Spatiotemporal Airy light bullets in the linear and nonlinear regimes. Physical Review Letters, 2010, 105(25): 253901

[84] Chong A, Renninger W H, Christodoulides D N, Wise F W. Airy–Bessel wave packets as versatile linear light bullets. Nature Photonics, 2010, 4(2): 103–106

[85] Papazoglou D G, Efremidis N K, Christodoulides D N, Tzortzakis S. Observation of abruptly auto focusing waves. Optics Letters, 2011, 6(10): 1842–1844

[86] Efremidis N K, Christodoulides D N. Abruptly autofocusing waves. Optics Letters, 2010, 35(23): 4045–4047

[87] Papazoglou D G. Personal communication, 2015

[88] Chremmos I, Efremidis N K, Christodoulides D N. Pre-engineered abruptly autofocusing beams. Optics Letters, 2011, 36(10): 1890–1892

[89] Liu K, Koulouklidis A D, Papazoglou D G, Tzortzakis S, Zhang X C. Enhanced terahertz wave emission from air-plasma tailored by abruptly autofocusing laser beams. Optica, 2016, 3(6): 605–608

[90] Koulouklidis A D, Papazoglou D G, Fedorov V Y, Tzortzakis S. Phase memory preserving harmonics from abruptly autofocusing beams. Physical Review Letters, 2017, 119(22): 223901

[91] Papazoglou D G, Fedorov V Y, Tzortzakis S. Janus waves. Optics Letters, 2016, 41(20): 4656–4659

[92] Panagiotopoulos P, Papazoglou D G, Couairon A, Tzortzakis S. Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets. Nature Communications, 2013, 4(1): 2622

[93] Polynkin P, Kolesik M, Roberts A, Faccio D, Di Trapani P, Moloney J. Generation of extended plasma channels in air using femtosecond Bessel beams. Optics Express, 2008, 16(20): 15733–15740

[94] Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N. Curved plasma channel generation using ultraintense Airy beams. Science, 2009, 324(5924): 229–232

[95] Scheller M, Mills M S, Miri M A, ChengW, Moloney J V, Kolesik M, Polynkin P, Christodoulides D N. Externally refuelled optical filaments. Nature Photonics, 2014, 8(4): 297–301

[96] Matsubara E, Nagai M, Ashida M. Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses. Applied Physics Letters, 2012, 101(1): 011105

[97] Manceau J M, Averchi A, Bonaretti F, Faccio D, Di Trapani P, Couairon A, Tzortzakis S. Terahertz pulse emission optimization from tailored femtosecond laser pulse filamentation in air. Optics Letters, 2009, 34(14): 2165–2167

[98] Zhao J, Guo L, Chu W, Zeng B, Gao H, Cheng Y, Liu W. Simple method to enhance terahertz radiation from femtosecond laser filament array with a step phase plate. Optics Letters, 2015, 40(16): 3838–3841

[99] Chu X. Evolution of an Airy beam in turbulence. Optics Letters, 2011, 36(14): 2701–2703

[100] Dolev I, Kaminer I, Shapira A, Segev M, Arie A. Experimental observation of self-accelerating beams in quadratic nonlinear media. Physical Review Letters, 2012, 108(11): 113903

[101] Dai J, Zhang X C. Terahertz wave generation from thin metal films excited by asymmetrical optical fields. Optics Letters, 2014, 39(4): 777–780

[102] Roskos H G, Thomson M D, Kreb M, Loffler T. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications. Laser & Photonics Reviews, 2007, 1(4): 349–368

[103] Oh T I, You Y S, Jhajj N, Rosenthal E W, Milchberg H M, Kim K Y. Scaling and saturation of high-power terahertz radiation generation in two-color laser filamentation. Applied Physics Letters, 2013, 102(20): 201113

[104] Gorodetsky A, Koulouklidis A D, Massaouti M, Tzortzakis S. Physics of the conical broadband terahertz emission from twocolor laser-induced plasma filaments. Physical Review A., 2014, 89(3): 033838

[105] Talebpour A, Petit S, Chin S L. Re-focusing during the propagation of a focused femtosecond Ti:sapphire laser pulse in air. Optics Communications, 1999, 171(4–6): 285–290

[106] Clough B, Karpowicz N, Zhang X C. Modulation of electron trajectories inside a filament for single-scan coherent terahertz wave detection. Applied Physics Letters, 2012, 100(12): 121105

[107] Buccheri F, Liu K, Zhang X C. Terahertz radiation enhanced emission of fluorescence from elongated plasmas and microplasmas in the counter-propagating geometry. Applied Physics Letters, 2017, 111(9): 091103

[108] Martin F, Mawassi R, Vidal F, Gallimberti I, Comtois D, Pepin H, Kieffer J C, Mercure H P. Spectroscopic study of ultrashort pulse laser breakdown plasmas in air. Applied Spectroscopy, 2002, 56(11): 1444–1452

[109] Liu J, Zhang X C. Enhancement of laser-induced fluorescence by intense terahertz pulses in gases. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 229–236

[110] Liu J, Dai J, Zhang X C. Ultrafast broadband terahertz waveform measurement utilizing ultraviolet plasma photoemission. Journal of the Optical Society of America B, Optical Physics, 2011, 28(4): 796–804

, , . Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiationenhanced-emission-of-fluorescence: a review[J]. Frontiers of Optoelectronics, 2019, 12(2): 117–147. Kang LIU, Pingjie HUANG, Xi-Cheng ZHANG. Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiationenhanced-emission-of-fluorescence: a review[J]. Frontiers of Optoelectronics, 2019, 12(2): 117–147.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!