光子学报, 2018, 47 (11): 1106001, 网络出版: 2018-12-17   

飞秒激光直写长周期光纤光栅及其光谱特性

Fabrication of Long Period Fibre Gratings by Femtosecond Laser Writing Directly and Its Spectral Characteristics
张亚妮 1,2,3,*郗亚茹 1,3江鹏 1,3许强 1,3王朝晋 1,3朱雨雨 1,3薛璐 1,3
作者单位
1 宝鸡文理学院 物理与光电技术学院, 陕西 宝鸡 721016
2 陕西科技大学 文理学院, 西安 710021
3 宝鸡市超快激光与新材料工程技术研究中心, 陕西 宝鸡 721016
摘要
基于800 nm飞秒激光脉冲, 设计并搭建了长周期光纤光栅制备系统, 该系统通过采用20倍率的显微物镜将飞秒激光脉冲诱导入标准单模光纤纤芯位置, 采用水平、垂直双CCD视频监控方式实现对飞秒激光脉冲刻蚀长周期光纤光栅的逐点监测, 对未载氢处理的标准单模光纤进行了不同周期、不同周期长度和不同占空比刻写实验.研究结果表明, 当选取激光脉冲能量为1.3 mW、光栅周期为500 μm、光栅占空比为0.6时, 该光栅在谐振波长1 300 nm处最大谐振峰强度为11.65 dB, 带外损耗低于2 dB, 且光栅谐振波长随光栅长度不发生明显漂移; 通过光栅占空比的调整, 可实现刻写光栅光谱特性的优化设计, 使得谐振峰由多峰转为单峰.
Abstract
The experimental system to write long-period fiber gratings was set up based on femtosecond laser pulses with a central wavelength 800 nm. In this system, the femtosecond laser pulses were induced in the fiber core of the normal SMF-28 by adopting a micro-objective of 20×, and the processing of writing long-period fiber gratings was monitored by adopting the horizontal and vertical dual-CCD video. The long-period fiber gratings with different period, different period number and different duty ratio were inscribed in no-hydrogen-loaded SMF-28 fiber. The experiment result shows that the maximum resonance peak loss of 11.65 dB will be generated at the wavelength of 1 300 nm and out-of-band loss is lower than 2 dB when the laser pulse energy is selected of 1.3 mW, the period of grating is 500 μm and the duty ratio of grating is 0.6, and the resonant wavelength of grating is not apparent drift with the length of the grating. More further, the optimal spectral characteristics of grating can be designed through the adjustment of grating duty ratio, and the resonance peak will be changed from multi-peak to single peak.
参考文献

[1] KERSEY A D, DAVIS M A, PATRICK H J, et al. Fiber grating sensors[J]. Journal of Lightwave Technology,1997, 15(8): 1442-1463.

[2] 敬世美, 张轩宇, 梁居发, 等. 飞秒激光刻写的超短光纤布拉格光栅及其传感特性[J]. 中国光学, 2017, 10(4): 449-454.

    JING Shi-mei, ZHANG Xuan-yu, LIANG Ju-fa, et al. Ultrashort fiber Bragg grating written by femtosecond laser and its sensing characteristics[J]. Chinese Optics, 2017, 10(4): 449-454.

[3] VENGSARKAR A M, LEMAIRE P J, ERDOGAN T. Long-Period fiber gratings as band-rejection filters[J]. Journal of Lightwave Technology, 1996, 14(1): 58-65.

[4] LEE H, AGRAWAL G P. Bandwidth equalization of purely phase-sampled fiber Bragg gratings for broadband dispersion and dispersion slope compensation[J].Optics Express, 2004, 12(23): 5595-5602.

[5] DIANA V, JOEL P C, LUIS C, et al.Long-period grating fiber sensor with in situ optical source for remote sensing[J].IEEE Photonics Technology Letters, 2010, 22(20): 1533-1535.

[6] VENGSARKAR A M, PEDRAZZANI J R, JUDKINS J B, et al.Long-period fiber grating based gain equalizers[J].Optics Letter, 1996, 21(5): 336-338.

[7] 吴敏, 饶云江, 冉曾令, 等.基于LPFG 滤噪和混合放大的长距离FBG传感器系统[J].光电子·激光, 2007, 18(11): 1289-1292.

    WU Min, RAO Yun-jiang, RAN Zeng-ling, et al. A long distance FBG sensor system based on LPFG denoising and hybrid amplification[J]. Journal of Optoelectronics Laser, 2007, 18(11): 1289-1292.

[8] 李川, 张以谟, 赵永贵.光纤光栅: 原理、技术与传感应用[M].北京: 科学出版社, 2005.

    LI Chuan, ZHANG Yi-mo, ZHAO Yong-gui. Fiber grating: principle, technology and application[M]. Beijing: Science Press, 2005.

[9] LI H, YANG H, LI E, et al. Wearable sensors in intelligent clothing for measuring human body temperature based on optical fiber Bragg grating[J]. Optics Express, 2012, 20(11): 11740-11752.

[10] LI H, LI Y, LI E, et al.Temperature-insensitive arrayed waveguide grating demodulation technique for fiber Bragg grating sensors[J]. Optics and Laser Technology, 2013, 51(5): 77-81.

[11] LI Hong-qiang, MA Xiang-dong, CUI Bei-bei, et al. Chip-scale demonstration of hybrid III-V/silicon photonic integration for an FBG interrogator[J]. Optica, 2017, 4(7): 692-700.

[12] 李达, 何巍, 闫光, 等. 飞秒直写长周期光纤光栅及其液体折射率特性研究[J]. 半导体光电, 2017, 38(3): 325-329.

    LI Da, HE Wei, YAN Guang,et al. LPFG Fabricated by femtosecond laser and its characteristics of refractive index of liquid[J]. Semiconductor Optoelectronics, 2017, 38(3): 325-329.

[13] 林君. 基于长周期光纤光栅的压力传感研究[D]. 深圳: 深圳大学, 2015.

    LIN Jun. The pressure sensing research on long-period fiber grating [D]. Shenzhen: Shenzhen University, 2015.

[14] 杨蕊竹. 长周期光纤光栅的特性及传感应用研究[D]. 长春: 吉林大学, 2012.

    YANG Rui-zhu. Characterization and sensing application of long period fiber gratings[D]. Changchun: Jilin University, 2012.

[15] 朱涛, 饶云江, 莫秋菊. 高频CO2 激光脉冲写入的超长周期光纤光栅[J].光子学报, 2005, 34(11): 1697-1700.

    ZHU Tao, RAO Yun-jiang, MO Qiu-ju.Ultra-long period fiber grating written by high-frequency CO2 laser pulses[J].Acta Photonics Sinica, 2005, 34(1): 1697-1700.

[16] Hill K O, MALO B, BILODEAU F. Bragg gratings fabricated in mono-mode photosensitive optical fiber by UV exposure thorough a phase mask[J]. Applied Physics Letters, 1993, 62(10): 1035-1037.

[17] 张新城. 基于飞秒激光的光纤微结构制备及特性研究[D]. 哈尔滨: 黑龙江大学, 2015.

    ZHANG Xin-cheng. Fabrication and characterization of fiber microstructure based on femtosecond laser[D]. Harbin: Heilongjiang University, 2015.

[18] MARTINEZ A, DUBOV M, KHRUSHCHEV I, et al.Photo induced modifications in fiber gratings inscribed directly by infrared femtosecond irradiation[J]. IEEE Photonics Technology Letters, 2006, 18(21): 2266-2268.

[19] MARTINEZ A, KHRUSHCHEV I, BENNION I. Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser[J]. Optics Letters, 2006, 31(11): 1603-1605.

[20] ZHANG N, YANG J J, WANG M W, et al. Fabrication of long-period fiber gratings using 800 nm femtosecond laser pulses[J]. Chinese Physics Letter, 2006, 23(12): 3281-3284.

[21] ALLSOPT T, KALLI K, ZHOU K, et al. Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors [J]. Optics Communications, 2008, 281(20): 5092-5096.

[22] 王英. 飞秒激光制作体光栅及新型光纤传感器件的实验研究[D]. 武汉: 华中科技大学,2010.

    WANG Ying. Experimental investigation on the fabrication of volume grating and novel fiber sensors based on femtoseeond laser [D]. Wuhan: Huazhong University of Science and Technology, 2010.

[23] 陆君辉,施解龙,陈圆圆,等. 飞秒激光刻写长周期光纤光栅的应变特性[J]. 上海大学学报(自然科学版), 2012,18(4): 379-383.

    LU Jun-hui, SHI Jie-long, CHEN Yuan-yuan, et al. Strain characteristics of long period fiber gratings written by femtosecond lasers[J]. Journal of Shanghai University,2012, 18(4): 379-383.

[24] FUIJI T, FUKUDA T, ISHIKAWA S, et al. Characteristics improvement of long-period fiber gratings fabricated by femtosecond laser pulses using novel positioning technique[C]. Proceedings of Optical Fiber Communication Conference, 2004: THC6.

[25] 张亚妮, 刘思聪, 赵亚, 等. 800 nm高能量飞秒激光脉冲刻写长周期光纤光栅机理[J]. 光子学报, 2018, 47(1): 0106003

    ZHANG Ya-ni, LIU Si-cong, ZHAO Ya, et al. Fabrication mechanism of long-period fiber grating based on 800nm high intensity femto-second laser pulses[J]. Acta Photonica Sinica, 2018, 47(1): 0106003

[26] ERDOGAN T. Cladding mode resonances in short and long period fiber grating filters[J].Journal of the Optical Society of America A, 1997, 14(8): 1760-1773.

[27] ERDOGAN T. Cladding mode resonances in short and long period fiber grating filters: errata[J]. Journal of the Optical Society of America A, 2000, 17(11): 2113.

[28] 何万迅, 施文康, 叶爱伦. 长周期光纤光栅耦合常数的研究[J]. 光学技术, 2002, 28(6): 535-536+538.

    HE Wan-xun, SHI Wen-kang, YE Ai-lun. Fiber long-period grating coupling constant[J]. Optical Technique, 2002, 28(6): 535-536+538.

[29] 李玉强, 周恒为. 长周期光纤光栅的耦合特性及模拟分析[J]. 枣庄学院学报, 2015,32(2): 17-24.

    LI Yu-qiang, ZHOU Heng-wei. Coupling characteristics of long-periods fiber grating and the simulation analysis[J]. Journal of Zaozhuang Univrsity, 2015, 32(2): 17-24.

张亚妮, 郗亚茹, 江鹏, 许强, 王朝晋, 朱雨雨, 薛璐. 飞秒激光直写长周期光纤光栅及其光谱特性[J]. 光子学报, 2018, 47(11): 1106001. ZHANG Ya-ni, XI Ya-ru, JIANG Peng, XU Qiang, WANG Chao-jin, ZHU Yu-yu, XUE Lu. Fabrication of Long Period Fibre Gratings by Femtosecond Laser Writing Directly and Its Spectral Characteristics[J]. ACTA PHOTONICA SINICA, 2018, 47(11): 1106001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!