光学 精密工程, 2015, 23 (10): 2870, 网络出版: 2015-11-30   

双视场多通道成像仪的光机结构

Opto-mechanical structure of imager with two field of views and multiple channels
作者单位
中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
摘要
针对环境适应性和探测精度的要求,设计了双视场、多通道成像仪的光机结构,以获取高空间、时间覆盖和高垂直分辨率的大气图像和数据信息。根据光学探测和光学定位精度的要求,设计的光学系统结构以及对应的机械结构采用了天底和临边多方位观测模式。该结构通过柔性系统保证了成像仪在45°C的温差范围内能够正常工作。由于温差较大,系统中构建了CCD探测器裸片的精密定位与散热系统。为验证光机结构设计的正确性,对集成后的成像仪进行了光学系统性能检测。检测实验显示,边界温度状况下3个光学通道的分辨率均优于4 km,达到对地球临边和天底大气进行探测的需求。成像仪的质量为8.3 kg,其一阶基频大于100 Hz,最大应力为52.5 MPa。该光机结构设计合理、紧凑,满足刚度、强度以及目标探测要求,适合空间遥感的应用。
Abstract
To get the atmosphere images and data information with high spatio-temporal coverages and high vertical resolution, an opto-mechanical structure for the imager with two field of views and multiple channels was designed based on the environmental adaptability and accuracy requirements. In consideration of detection and position accuracy, a nadir and limb multiple-azimuth observation model was used in the optical system and corresponding mechanical structure. A flexible system was taken to allow the imager to operate at a temperature range of 45 ℃ normally. Duo to a larger temperature range, the precision positioning and cooling system for a CCD bare chip was constructed. To verify the feasibility of the opto-mechanical structure, the performance of the optical system in the imager was tested. The experimental results indicate that the spatial resolutions of the three optical channels are all better than 4 km under boundary temperature, which shows the imager can be used in limb and nadir detections. The imager shows its mass is 8.3 kg, the first order frequency is greater than 100 Hz, and the max stress is 52.5 MPa. The designed opto-mechanical structure is reasonable and compact, the opto-mechanical structure satisfies the requirements of strength, stiffness and target detection, and it is suitable for the space remote sensing.
参考文献

[1] STEPHEN A S, TRAVIS P, STEPHEN A. Optomechanical design concept for GMACS, a wide-field, multiobject,moderate resolution optical spectrograph for the Giant Magellan Telescope (GMT) [J]. SPIE, 2012, 8446: 84467N-12.

[2] NEVINT K E,DOYLE K B,PILLSBURY A D. Optomechanical design and analysis for the LLCD space terminal telescope[J]. SPIE,2011, 8127: 81270G-11.

[3] HAN W Y,LEE D H,PARK Y S, et al.. System design of compact IR space imaging system, MIRIS [J]. SPIE,2010, 7731: 77311W-1.

[4] LEVELTA P F,ORDA VAN G H J O. TROPOMI and TROPI: UV/VIS/NIR/SWIR instruments [C]. SPIE, 2006,6296: 629619-1.

[5] 王智,李朝辉.月基极紫外相机光机结构设计[J].光学 精密工程,2011,19(10) : 2427-2433.

    WANG ZH, LI ZH H. Design of optical-mechanical structure for lunar-based extreme ultraviolet camera[J]. Opt. Precision Eng., 2011, 19(10): 2427-2433. (in Chinese)

[6] 刘玉娟,崔继承,巴音贺希格,等. 凸面光栅成像光谱仪的研制与应用[J]. 光学 精密工程,2012,20(1): 52-56.

    LIU Y J, CUI J CH, BAYINHSHG, et al.. Design of acousto-optc imaging spectrometer for mars exploration [J]. Opt. Precision Eng., 2012,20(1): 52-56.(in Chinese)

[7] 孔鹏,唐玉国,巴音贺希格,等.双光栅切换微型平场全息凹面光栅光谱仪[J]. 光学学报,2013,33(1): 0105001-7.

    KONG P, TANG Y G,BAYIN H SH G, et al.. Double-grating minitype flat-field holographic concave grating spectrograph [J]. Acta Optica Sinica,2013,33(1): 0105001-7.(in Chinese)

[8] 于向阳,王淑荣,黄煜,等.地球临边/天底同时探测的紫外环形成像仪[J]. 光学学报, 2012,32(12): 1211004-7.

    YU X Y,WANG SH R,HUANG Y, et al.. Development of UV annular imager for earth limb and nadir sounding simultaneously [J]. Acta Optica Sinica,2012,32(12): 1211004-7. (in Chinese)

[9] 杨会生,张银鹤,柴方茂,等. 离轴三反空间相机调焦机构设计[J]. 光学 精密工程,2013,21(4): 948-954.

    YANG H SH,ZHANG Y H,CHAI F M, et al.. Design of mechanism for off-axis TMA space camera [J]. Opt. Precision Eng., 2013, 21(4): 948-954. (in Chinese)

[10] 王智,王忠素.月基极紫外相机反射镜与探测器间支撑结构[J].仪器仪表学报,2013,34(1): 57-63.

    WANG ZH,WANG ZH S. Supporting structure between reflection mirror and detector in lunar-based extreme ultraviolet camera [J]. Chinese Journal of Scentific Instrument, 2013,34(1): 57-63. (in Chinese)

[11] 郑玉权, 高志良. CO2探测仪光学系统设计[J]. 光学 精密工程,2012,20(12): 2645-2653.

    ZHENG Y Q,GAO ZH L. Optical system design of CO2 sounder [J].Opt. Precision Eng.,2012,20(12): 2645-2653. (in Chinese)

[12] YODER P R. Mounting Optics in Optical Instruments [M]. Bellingham, Washington USA,SPIE Press,2006.

[13] HAN W Y,LEE D H,PARK Y G, et al.. System design of compact IR space imaging system, MIRIS[J]. SPIE,2010, 7731: 77311W-1.

[14] RYABOY V M. Analysis of thermal stress and deformation in elastically bonded optics[J].SPIE,2007, 6665: 66650K-1.

[15] BALTAY C,EMMET W,RABINOWITZ D, et al.. Space-qualified, abuttable packaging for LBNL p-channel CCDs, part I [J]. SPIE,2010, 7742: 77422E-1.

[16] SCHIPANI P,PERROTTA F,MARTY L. Integrated modeling approach for an active optics system [C]. SPIE, 2006,6271: 627116-1.

[17] ANGELI G,DUNN J,ROBERTS S, et al..Modeling tools to estimate the performance of the Thirty Meter Telescope: an integrated approach [C]. SPIE, 2004,5497: 237-250.

[18] 卢鄂,颜昌翔,吴清文,等.空间光学遥感器环境适应性设计与实验研究[J]. 中国光学与应用光学,2012,20(1): 52-56.

    LU E, YAN CH X, WU Q W, et al.. Research on adaptability of optical remote sensors in mechanical and space thermal environments[J]. Chinese Journal of Optics and Applied Optics, 2009,2(5): 364-375.(in Chinese)

于向阳. 双视场多通道成像仪的光机结构[J]. 光学 精密工程, 2015, 23(10): 2870. YU Xiang-yang. Opto-mechanical structure of imager with two field of views and multiple channels[J]. Optics and Precision Engineering, 2015, 23(10): 2870.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!