Photonics Research, 2019, 7 (9): 09000984, Published Online: Aug. 8, 2019   

Investigation of nonlinear optical properties of rhenium diselenide and its application as a femtosecond mode-locker Download: 603次

Author Affiliations
School of Electrical and Computer Engineering, University of Seoul, Seoul 02504, South Korea
Copy Citation Text

Jinho Lee, Kyungtaek Lee, Suhyoung Kwon, Bumsoo Shin, Ju Han Lee. Investigation of nonlinear optical properties of rhenium diselenide and its application as a femtosecond mode-locker[J]. Photonics Research, 2019, 7(9): 09000984.

References

[1] D.-S. Tsai, K.-K. Liu, D.-H. Lien, M.-L. Tsai, C.-F. Kang, C.-A. Lin, L.-J. Li, J.-H. He. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano, 2013, 7: 3905-3911.

[2] K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, W. J. Blau. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano, 2013, 7: 9260-9267.

[3] K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, J. Wang. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. Nanoscale, 2014, 6: 10530-10535.

[4] S. H. Kassani, R. Khazaeinezhad, H. Jeong, T. Nazari, D.-I. Yeom, K. Oh. All-fiber Er-doped Q-switched laser based on tungsten disulfide saturable absorber. Opt. Mater. Express, 2015, 5: 373-379.

[5] S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, J. Wang. Broadband few-layer MoS2 saturable absorber. Adv. Mater., 2014, 26: 3538-3544.

[6] H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, K. P. Loh. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express, 2014, 22: 7249-7260.

[7] X. Fu, J. Qian, X. Qiao, P. Tan, Z. Peng. Nonlinear saturable absorption of vertically stood WS2 nanoplates. Opt. Lett., 2014, 39: 6450-6453.

[8] D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, J. Zhao. WS2 mode-locked ultrafast fiber laser. Sci. Rep., 2015, 5: 7965.

[9] K. P. Loh, H. Zhang, W. Z. Chen, W. Ji. Templated deposition of MoS2 nanotubules using single source precursor and studies of their optical limiting properties. J. Phys. Chem. B, 2006, 110: 1235-1239.

[10] E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, S. A. Mikhailov. Coherent nonlinear optical response of graphene. Phy. Rev. Lett., 2010, 105: 097401.

[11] G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, J. Wang. Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited]. Photon. Res., 2015, 3: A51-A55.

[12] S. J. Varma, J. Kumar, Y. Li, K. Layne, J. Wu, C. Liang, Y. Nakanishi, A. Aliyan, W. Yang, P. M. Ajayan, J. Thomas. 2D TiS2 layers: a superior nonlinear optical limiting material. Adv. Opt. Mater., 2017, 5: 1700713.

[13] S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski. Laser mode locking using a saturable absorber incorporating carbon nanotubes. J. Lightwave Technol., 2004, 22: 51-56.

[14] Y.-W. Song, S. Yamashita, C. S. Goh, S. Y. Set. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers. Opt. Lett., 2007, 32: 148-150.

[15] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 2009, 19: 3077-3083.

[16] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4: 803-810.

[17] Y.-W. Song, S.-Y. Jang, W.-S. Han, M.-K. Bae. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction. Appl. Phys. Lett., 2010, 96: 051122.

[18] K. P. Loh, Q. Bao, G. Eda, M. Chhowalla. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem., 2010, 2: 1015-1024.

[19] S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, J. H. Lee. Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction. J. Lightwave Technol., 2016, 34: 3776-3784.

[20] BernardF.ZhangH.GorzaS. P.EmplitP., “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper NTh1A.5.

[21] Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, D. Tang. Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser. J. Lightwave Technol., 2013, 31: 2857-2863.

[22] J. Lee, J. Koo, Y. M. Jhon, J. H. Lee. A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator. Opt. Express, 2014, 22: 6165-6173.

[23] H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. Luo, W.-C. Xu, H. Zhang, C.-J. Zhao, S.-C. Wen. Femtosecond pulse generation from a topological insulator mode-locked fiber laser. Opt. Express, 2014, 22: 6868-6873.

[24] J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, K. M. Abramski. Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber. Opt. Mater. Express, 2014, 4: 1-6.

[25] Y. I. Jhon, J. Lee, Y. M. Jhon, J. H. Lee. Topological insulators for mode-locking of 2-μm fiber lasers. IEEE J. Sel. Top. Quantum Electron., 2018, 24: 1102208.

[26] K. Wu, X. Zhang, J. Wang, J. Chen. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber. Opt. Lett., 2015, 40: 1374-1377.

[27] R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, J. R. Taylor. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2). Opt. Express, 2014, 22: 31113-31122.

[28] J. Koo, J. Park, J. Lee, Y. M. Jhon, J. H. Lee. Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber. Opt. Express, 2016, 24: 10575-10589.

[29] J. Lee, J. Koo, J. Lee, Y. M. Jhon, J. H. Lee. All-fiberized, femtosecond laser at 1912 nm using a bulk-like MoSe2 saturable absorber. Opt. Mater. Express, 2017, 7: 2968-2979.

[30] D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, J. Zhao. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets. Sci. Rep., 2016, 6: 23583.

[31] D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, J. Zhao. Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets. Small, 2016, 12: 1489-1497.

[32] J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, J. H. Lee. Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking. Adv. Funct. Mater., 2016, 26: 7454-7461.

[33] K. Niu, R. Sun, Q. Chen, B. Man, H. Zhang. Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber. Photon. Res., 2018, 6: 72-76.

[34] Y. Cui, F. Lu, X. Liu. Nonlinear saturable and polarization induced absorption of rhenium disulfide. Sci. Rep., 2017, 7: 40080.

[35] F. Lu. Passively harmonic mode-locked fiber laser based on ReS2 saturable absorber. Mod. Phys. Lett. B, 2017, 31: 1750206.

[36] X. Su, H. Nie, Y. Wang, G. Li, B. Yan, B. Zhang, K. Yang, J. He. Few-layered ReS2 as saturable absorber for 2.8  μm solid state laser. Opt. Lett., 2017, 42: 3502-3505.

[37] D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, J. Zhao. Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber. IEEE J. Sel. Top. Quantum Electron., 2018, 24: 1100406.

[38] X. Xu, M. Jiang, D. Li, R. Wang, Z. Ren, J. Bai. Passive Q-switching based on ReS2 saturable absorber in Er-doped fiber laser at 1532  nm. Opt. Quantum Electron., 2018, 50: 39.

[39] L. Du, G. Jiang, L. Miao, B. Huang, J. Yi, C. Zhao, S. Wen. Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator. Opt. Mater. Express, 2018, 8: 926-935.

[40] Z. Li, N. Dong, Y. Zhang, J. Wang, H. Yu, F. Chen. Invited article: mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber. APL Photon., 2018, 3: 080802.

[41] C. Li, Y. Leng, J. Huo. Diode-pumped solid-state Q-switched laser with rhenium diselenide as saturable absorber. Appl. Sci., 2018, 8: 1753.

[42] C. Li, Y. Leng, J. Huo. ReSe2 as a saturable absorber in a Tm-doped yttrium lithium fluoride (Tm:YLF) pulse laser. Chin. Opt. Lett., 2019, 17: 011402.

[43] J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, S. Ruan. High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber. Photon. Res., 2018, 6: 535-541.

[44] J. Wang, H. Chen, Z. Jiang, J. Yin, J. Wang, M. Zhang, T. He, J. Li, P. Yan, S. Ruan. Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride. Opt. Lett., 2018, 43: 1998-2001.

[45] J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, S. Ruan. Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser. Opt. Lett., 2017, 42: 5010-5013.

[46] Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, D. Fan. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express, 2015, 23: 12823-12833.

[47] K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, Y.-W. Song. Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction. Ann. Phys., 2015, 527: 770-776.

[48] S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, D. Y. Fan. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. Opt. Express, 2015, 23: 11183-11194.

[49] X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, W.-C. Xu. Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser. Appl. Phys. Lett., 2014, 105: 161107.

[50] D. Fan, C. Mou, X. Bai, S. Wang, N. Chen, X. Zeng. Passively Q-switched erbium-doped fiber laser using evanescent field interaction with gold-nanosphere based saturable absorber. Opt. Express, 2014, 22: 18537-18542.

[51] J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, J. H. Lee. Filled skutterudites for broadband saturable absorbers. Adv. Opt. Mater., 2017, 5: 1700096.

[52] J. Lee, Y. Kim, K. Lee, J. H. Lee. Femtosecond mode-locking of a fiber laser using a CoSb3-skutterudite-based saturable absorber [Invited]. Photon. Res., 2018, 6: C36-C43.

[53] Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, Y. M. Jhon. Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv. Mater., 2017, 29: 1702496.

[54] X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, H. Zhang. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T=F, O, or OH). Laser Photon. Rev., 2018, 12: 1700229.

[55] Y. I. Jhon, J. Lee, M. Seo, J. H. Lee, Y. M. Jhon. van der Waals layered tin selenide as highly nonlinear ultrafast saturable absorber. Adv. Opt. Mater., 2019, 7: 1801745.

[56] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7: 699-712.

[57] S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, J. Wang. Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films. ACS Nano, 2015, 9: 7142-7150.

[58] R. I. Woodward, R. T. Murray, C. F. Phelan, R. E. P. de Oliveira, T. H. Runcorn, E. J. R. Kelleher, S. Li, E. C. de Oliveira, G. J. M. Fechine, G. Eda, C. J. S. de Matos. Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS2 using multiphoton microscopy. 2D Mater., 2017, 4: 011006.

[59] N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, H. Zhao. Second harmonic microscopy of monolayer MoS2. Phys. Rev. B, 2013, 87: 161403.

[60] R. Wang, H.-C. Chien, J. Kumar, N. Kumar, H.-Y. Chiu, H. Zhao. Third-harmonic generation in ultrathin films of MoS2. ACS Appl. Mater. Interfaces, 2014, 6: 314-318.

[61] S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S.-S. Li, A. Suslu, F. M. Peeters, Q. Liu, J. Li, S. Tongay. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett., 2015, 15: 1660-1666.

[62] H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, H. Wang. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res., 2015, 8: 3651-3661.

[63] H. Yang, H. Jussila, A. Autere, H.-P. Komsa, G. Ye, X. Chen, T. Hasan, Z. Sun. Optical waveplates based on birefringence of anisotropic two-dimensional layered materials. ACS Photon., 2017, 4: 3023-3030.

[64] C. M. Corbet, S. S. Sonde, E. Tutuc, S. K. Banerjee. Improved contact resistance in ReSe2 thin film field-effect transistors. Appl. Phys. Lett., 2016, 108: 162104.

[65] F. Qi, X. Wang, B. Zheng, Y. Chen, B. Yu, J. Zhou, J. He, P. Li, W. Zhang, Y. Li. Self-assembled chrysanthemum-like microspheres constructed by few-layer ReSe2 nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta, 2017, 224: 593-599.

[66] P. Hu, M. Jia, Y. Zuo, L. He. A silica/PVA adhesive hybrid material with high transparency, thermostability and mechanical strength. RSC Adv., 2017, 7: 2450-2459.

[67] X. Zhang, Y. Zhou, J. Zhang. In-situ reduced graphene oxide-polyvinyl alcohol composite coatings as protective layers on magnesium substrates. Prog. Nat. Sci., 2017, 27: 326-328.

[68] D. Wolverson, S. Crampin, A. S. Kazemi, A. Ilie, S. J. Bending. Raman spectra of monolayer, few-layer, and bulk ReSe2: an anisotropic layered semiconductor. ACS Nano, 2014, 8: 11154-11164.

[69] S. Jiang, Z. Zhang, N. Zhang, Y. Huan, Y. Gong, M. Sun, J. Shi, C. Xie, P. Yang, Q. Fang, H. Li, L. Tong, D. Xie, L. Gu, P. Liu, Y. Zhang. Application of chemical vapor-deposited monolayer ReSe2 in the electrocatalytic hydrogen evolution reaction. Nano Res., 2018, 11: 1787-1797.

[70] S. Yang, S. Tongay, Y. Li, Q. Yue, J.-B. Xia, S.-S. Li, J. Li, S.-H. Wei. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale, 2014, 6: 7226-7231.

[71] H.-X. Zhong, S. Gao, J.-J. Shi, L. Yang. Quasiparticle band gaps, excitonic effects, and anisotropic optical properties of the monolayer distorted 1T diamond-chain structures ReS2 and ReSe2. Phys. Rev. B, 2015, 92: 115438.

[72] R. I. Woodward, E. J. R. Kelleher. 2D saturable absorber for fibre lasers. Appl. Sci., 2015, 5: 1440-1456.

[73] M. Sheik-Bahae, A. A. Said, E. W. Van Stryland. High-sensitivity, single-beam n2 measurements. Opt. Lett., 1989, 14: 955-957.

[74] Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, D. Fan. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv. Opt. Mater., 2018, 6: 1701166.

[75] X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, H. Zhang. Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics. Adv. Opt. Mater., 2018, 6: 1800561.

[76] M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. Hu, S. V. Popov, J. R. Taylor, T. Hasan. Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser. Nano Res., 2015, 8: 1522-1534.

[77] M. Zhang, G. Hu, G. Hu, R. C. T. Howe, L. Chen, Z. Zheng, T. Hasan. Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber. Sci. Rep., 2015, 5: 17482.

[78] X. Zheng, Y. Zhang, R. Chen, X. Cheng, Z. Xu, T. Jiang. Z-scan measurement of the nonlinear refractive index of monolayer WS2. Opt. Express, 2015, 23: 15616-15623.

[79] S. Bikorimana, P. Lama, A. Walser, R. Dorsinville, S. Anghel, A. Mitioglu, A. Micu, L. Kulyuk. Nonlinear optical responses in two-dimensional transition metal dichalcogenide multilayer: WS2, WSe2, MoS2 and Mo0.5W0.5S2. Opt. Express, 2016, 24: 20685-20695.

[80] C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, U. Keller. Q-switching stability limits of continuous-wave passive mode locking. J. Opt. Soc. Am. B, 1999, 16: 46-56.

[81] J. Jeon, J. Lee, J. H. Lee. Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking. J. Opt. Soc. Am. B, 2015, 32: 31-37.

[82] K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, J. Chen. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited). Opt. Commun., 2018, 406: 214-229.

[83] S. M. J. Kelly. Characteristic sideband instability of periodically amplified average soliton. Electron. Lett., 1992, 28: 806-807.

Jinho Lee, Kyungtaek Lee, Suhyoung Kwon, Bumsoo Shin, Ju Han Lee. Investigation of nonlinear optical properties of rhenium diselenide and its application as a femtosecond mode-locker[J]. Photonics Research, 2019, 7(9): 09000984.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!