光学学报, 2017, 37 (7): 0711003, 网络出版: 2017-07-10  

一种地基太阳望远镜焦点探测方法

A Focus Detection Method for Ground-Based Solar Telescope
作者单位
1 中国科学院云南天文台, 云南 昆明 650216
2 中国科学院大学, 北京 100049
摘要
太阳强热辐射导致太阳望远镜光机系统热形变,引发较明显的时变焦点位置漂移。离焦像差影响高分辨观测,降低观测图像的空间分辨率,因此需要探测并补偿望远镜的离焦像差。由于大气湍流的影响,一般的基于图像处理的焦点探测方法不能有效地运用于地基太阳望远镜。而天文望远镜常用的基于Shack-Hartman波前探测的方法,在观测太阳边缘和低对比度的太阳米粒结构时无法工作。因此,提出一种基于图像能谱分析的焦点探测方法,该方法以图像能谱比的低频分量平均值作为焦点探测评价函数,能够消除目标信息的影响和平滑大气湍流的影响。实验证明,该方法的探测精度和探测时间分辨率能满足地基太阳望远镜不同观测目标的高分辨观测的需要。
Abstract
Intense solar radiation leads to thermal deformation of the solar telescope opto-mechanical system, triggering obvious time-varying focus shifts. Defocus aberration has an adverse effect on high-resolution observation and reduces the image spatial resolution. Therefore, the defocus aberration is necessary to be detected and compensated. Considering the effects of atmospheric turbulence, the focus detection method based on general image processing can not be applied well on ground-based solar telescopes. The focus detecting method based on Shack-Hartman wavefront detection which commonly used in astronomical telescopes is invalid at observing the solar limb and the low contrast solar granulation. The focus detecting method based on image power spectrum analysis is provided. This method used the average value of the low-frequency components of the image spectrum ratio as the cost function for focus detection, which can effectively eliminate the impact of object structure and atmospheric turbulence. Experimental results show that the detecting accuracy and frequency of this method can meet the requirement of high-resolution observations for different objects on ground-based solar telescope.
参考文献

[1] 方玉亮, 金振宇, 刘 忠, 等. 一米新真空太阳望远镜离焦对高分辨太阳观测图像重建的影响[J]. 天文研究与技术, 2015, 12(2): 183-188.

    Fang Yuliang, Jin Zhenyu, Liu Zhong, et al. A study of influences of defocus aberrations on high-resolution image reconstruction for data from the mew vacuum solar telescope of the YNAO[J]. Astronomical Research and Technology, 2015, 12(2): 183-188.

[2] Bettonvil F C, Suetterlin P, Hammerschlag R H, et al. Multi-wavelength imaging system for the Dutch open telescope[C]. SPIE, 2003, 4853: 306-317.

[3] Sun Y, Duthaler S, Nelson B J. Autofocusing algorithm selection in computer microscopy[C]. International Conference on Intelligent Robots and Systems, 2005: 70-76.

[4] 赵志彬, 刘晶红. 基于图像功率谱的航空光电平台自动检焦设计[J]. 光学学报, 2010, 30(12): 3495-3500.

    Zhao Zhibin, Liu Jinghong. Power spectra based auto-focusing method for airborne optoelectronic platform[J]. Acta Optica Sinica, 2010, 30(12): 3495-3500.

[5] Guo L, Jiang A, Liu Z, et al. Minimum entropy for the space solar telescope automatic focus[C]. SPIE, 2005, 5642: 385-390.

[6] 王烨茹, 冯华君, 徐之海, 等. 基于饱和像素剔除的自动对焦评价函数[J]. 光学学报, 2016, 36(12): 1210001.

    Wang Yeru, Feng Huajun, Xu Zhihai, et al. An autofocus evaluation function based on the saturate pixels removing[J]. Acta Optica Sinica, 2016, 36(12): 1210001.

[7] Deng H, Zhang D, Wang T, et al. Objective image-quality assessment for high-resolution photospheric images by median filter-gradient similarity[J]. Solar Physics, 2015, 290(5): 1479-1489.

[8] Holmes R, Sickmiller B, Steinhoff N, et al. Accurate focus correction for large telescopes[C]. Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2015, 1: 68.

[9] Jin Z, Lin J, Liu Z. High-resolution image reconstruction technique applied to the optical testing of ground-based astronomical telescopes[C]. SPIE, 2008, 7012: 70122U.

[10] 林 京, 刘 忠, 金振宇. 天文高分辨像复原技术检测地基天文光学望远镜成像质量[J]. 天文研究与技术-国家天文台台刊, 2004, 1(3): 188-195.

[11] Silva-López M, Garranzo-García D, Sánchez A, et al. Analysis and evaluation of the Full Disk Telescope refocusing mechanism for the Solar Orbiter mission[J]. Optical Engineering, 2015, 54(8): 084104.

[12] Xiang Y, Liu Z, Jin Z. High resolution reconstruction of solar prominence images observed by the New Vacuum Solar Telescope[J]. New Astronomy, 2016, 49: 8-12.

[13] 顾德门. 统计光学[M]. 秦克诚, 刘培森, 曹奇志, 等译. 北京: 科学出版社, 1992: 362-375.

    Goodman J W.Statistical optics[M]. Qin Kecheng, Liu Peisen, Cao Qizhi, et al. Transl. Beijing: Science Press,1992: 362-375.

[14] 张 宁, 沈湘衡, 叶 露, 等. 光电测量设备图像高频频谱对主观评价的影响[J]. 光学学报, 2016, 36(4): 0411002.

    Zhang Ning, Shen Xiangheng, Ye Lu, et al. Influence of high frequency spectrum of photoelectric measurement equipment images to the subjective evaluation[J]. Acta Optica Sinica, 2016, 36(4): 0411002.

[15] Johansson E M, Gavel D T. Simulation of stellar speckle imaging[C]. SPIE, 1994, 2200: 372-383.

方玉亮, 柳光乾, 金振宇, 李鹏飞, 刘忠. 一种地基太阳望远镜焦点探测方法[J]. 光学学报, 2017, 37(7): 0711003. Fang Yuliang, Liu Guangqian, Jin Zhenyu, Li Pengfei, Liu Zhong. A Focus Detection Method for Ground-Based Solar Telescope[J]. Acta Optica Sinica, 2017, 37(7): 0711003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!