应用光学, 2014, 35 (3): 552, 网络出版: 2014-06-03  

芯泵浦高功率宽带谱平坦长波段光纤光源

Core-pumped high-power flattened L-band fiber superfluorescent sources
作者单位
1 福建师范大学 激光与光电子技术研究所 福建省光子技术重点实验室,医学光电科学与技术教育部重点实验室,福建 福州 350007
2 闽江学院 物理学与光电子信息工程系,福建 福州 350108
摘要
为了获得高功率、宽带宽及谱平坦的长波段掺铒光纤光源,基于2级双程芯泵浦,应用偏振复用技术实现泵浦瓦级供给,在泵浦总功率和光纤总长度都不变的情况下,数值分析了4种光源结构的输出特性受泵浦和光纤分配比例的影响。结果表明,4种结构基本都能工作于L波段(1 565 nm~1 610 nm),带宽受结构影响较小,但只有"双程后向+双程后向"结构可同时拥有高输出功率和高平坦度。其在总泵浦功率750 mW,第一级泵浦功率为300 mW,第二级泵浦功率为450 mW时,和光纤总长度21 m,第一级光纤长度为18 m,第二级光纤长度为3 m时,可实现输出功率314 mW,带宽32.41 nm,中心波长1 584.84 nm,平坦度2.23 dB的L波段超荧光光源。
Abstract
To demonstrate high-power, broad-bandwidth and spectrum-flattened L-band erbium-doped fiber superfluorescent source (SFS), four different core-pumped dual-stage double-pass configurations were proposed based on polarization multiplexing technique, offering Walt-level pump power. The impact of the pumping ratio and fiber length arrangement on the spectrum characteristics including flatness, bandwidth, center wavelength and total output power were numerically investigated with the same total length and total pump power. It shows that four structures can basically work at L band(1 565 nm~1 610 nm) and the bandwidth is less sensitive to structure change. Only the backward-pumped dual-stage double-pass configuration can simultaneously provide high flatness and high output power. A SFS with 314 mW output power, 32.41 nm bandwidth, 1 584.84 nm center wavelength and 2.23 dB flatness can be demonstrated while the total pump power and the pump powers of the first and second stages are 750 mW,300 mW and 450 mW,respectively, and the total fiber length, the fiber lengths of the first and second stages are 21 m,18 m and 3 m,respectively.
参考文献

[1] FERCHER A F, DREXLER W, HITZENBERGER C K, et al. Optical coherence tomography-principles and applications[J]. Rep. Prog. Phys., 2003, 66(2):239-303.

[2] PARSA P, JACQUES S L, NISHIOKA N S. Optical properties of rat liver between 350 nm and 2 200 nm[J].Appl. Opt., 1989, 28 (12):2325-2330.

[3] 郝燕玲, 王瑞. 铒离子浓度对掺铒光纤光源性能影响研究[J]. 光电工程, 2010, 37(7): 81-85.

    HAO Yan-ling,WANG rui. The impact of Erbium ions concentration to erbium-doped fiber source[J]. Opto-Electronic Engineering, 2010, 37(7):81-85. (in Chinese with an english abstract)

[4] CHEN S, LI Y, ZHU J, et al. Watt-level L band superfluorescent fiber source[J]. Opt. Express, 2005, 13(5) :1531-1536.

[5] 强则煊,韩一石,张旭苹. 新型三段高性能的长波段掺铒光纤超荧光光源的研究[J]. 光子学报, 2006, 35(5): 701-704. (in Chinese with an English abstract)

    QIANG Ze-xuan, HAN Yi-shi, ZHANG Xu-ping. A new three-stage structure for a high-performance L-band Erbium-doped superfluorescent fiber source[J]. Acta Photonica Sinica, 2006, 35(5): 701-704. (in Chinese with an English abstract)

[6] LEE J H, RYU U C, PARK N. Passive erbium-doped fiber seed photon generator for high-power Er3+-doped fiber fluorescent sources with an 80-nm bandwidth.[J]Optics Letters, 1999, 24 (5):279-281.

[7] HUANG W, WANG X, ZHENG B, et al. Stable and wideband L-band erbium superfluorescent fiber source using improved bi-directional pumping configuration[J]. Opt. Express, 2007, 15 (15):9778-9783.

[8] WANG X, HUANG W, XU H, et al. Ultra-high-efficiency L-band erbium-doped superfluorescent fiber source with broadening linewidth[J]. Opt. Eng., 2010, 49 (8):085003-1-6.

[9] SOBON G, KACZMAREK P, ANTONCZAK A, et al. Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers[J]. Optics Express, 2011, 19 (20):19104-19113.

[10] DAGENAIS D M, GOLDBERG L, MOELLER R P, et al. Wavelength stability characteristics of a high-power, amplified superfluorescent source[J]. Journal of Lightwave Technology, 1999, 17 (8):1415-1422.

[11] BECKER P C, OLSSON N A, SIMPSON J R. Erbium-doped fiber ampliffiers:fundamentals and technology[M]. San Diego:Academic Press, 1999.

[12] TACCHEO S, SORBELLO G, LAPORTA P, et al. 230 mW diode-pumped single-frequency Er : Yb laser at 1.5 μm[J]. IEEE Photonics Technology Letters, 2001, 13 (1):19-21.

[13] 郝素君. 宽带非相干光谱分割光源在WDM系统中的应用[J].网络电信, 2003(4) :42-44.

    HAO Su-jun. Broadband segment noncoherent spectrum light source in the application of WDM system[J]. Network Telecom, 2003(4):42-44.(in Chinese with an English abstract)

[14] 张徐亮, 强则煊, 沈林放, 等. 掺铒光纤放大器的理论模拟与全局分析[J]. 光子学报, 2002, 31(10):1256-1260.

    ZHANG Xu-liang, QIANG Ze-xuan, SHEN Lin-fang, et al. The theory analysis and global simulation of erbium-doped fiber amplifier[J].Acta Photonica Sinica, 2002, 31(10):1256-1260.(in Chinese with an English abstract)

[15] 常存, 杨九如, 叶红安. 基于Giles模型的超荧光光源功率输出特性仿真研究[J]. 中国激光, 2008, 35 (2):1-4.

    CHANG Cun, YANG Jiu-ru, YE Hong-an. The simulation research to power output characteristics of super fluorescent light source based on Giles model[J]. Chinese Journal of Lasers, 2008, 35(2):1-4. (in Chinese with an english abstract)

郑彦敏, 林碧金, 强则煊, 陈曦曜, 李晖, 邱怡申. 芯泵浦高功率宽带谱平坦长波段光纤光源[J]. 应用光学, 2014, 35(3): 552. ZHENG Yan-min, LIN Bi-jin, QIANG Ze-xuan, CHEN Xi-yao, LI Hui, QIU Yi-shen. Core-pumped high-power flattened L-band fiber superfluorescent sources[J]. Journal of Applied Optics, 2014, 35(3): 552.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!