Frontiers of Optoelectronics, 2016, 9 (1): 112, 网络出版: 2016-10-21  

Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range

Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range
作者单位
1 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
摘要
A highly efficient tunable optical filter of liquid crystal (LC) optical micro-ring resonator (MRR) was proposed. The 4-μm-radius ring consists of a silicon-oninsulator (SOI) asymmetric bent slot waveguide with a LC cladding. The geometry of the slot waveguide resulted in the strong electro-optic effect of the LC, and therefore induced an increase in effective refractive index by 0.0720 for the quasi-TE mode light in the slot-waveguide. The ultra-wide tuning range (56.0 nm) and large free spectral range (FSR) (~28.0 nm) of the optical filters enabled wavelength reconfigurable multiplexing devices with a drive voltage of only 5 V. The influences of parameters, such as the slot width, total width of Si rails and slot shift on the device’s performance, were analyzed and the optimal design was given. Moreover, the influence of fabrication tolerances and the loss of device were both investigated. Compared with state-of-the-art tunable MRRs, the proposed electrically tunable micro-ring resonator owns the excellent features of wider tuning ranges, larger FSRs and ultralow voltages.
Abstract
A highly efficient tunable optical filter of liquid crystal (LC) optical micro-ring resonator (MRR) was proposed. The 4-μm-radius ring consists of a silicon-oninsulator (SOI) asymmetric bent slot waveguide with a LC cladding. The geometry of the slot waveguide resulted in the strong electro-optic effect of the LC, and therefore induced an increase in effective refractive index by 0.0720 for the quasi-TE mode light in the slot-waveguide. The ultra-wide tuning range (56.0 nm) and large free spectral range (FSR) (~28.0 nm) of the optical filters enabled wavelength reconfigurable multiplexing devices with a drive voltage of only 5 V. The influences of parameters, such as the slot width, total width of Si rails and slot shift on the device’s performance, were analyzed and the optimal design was given. Moreover, the influence of fabrication tolerances and the loss of device were both investigated. Compared with state-of-the-art tunable MRRs, the proposed electrically tunable micro-ring resonator owns the excellent features of wider tuning ranges, larger FSRs and ultralow voltages.
参考文献

[1] Selvaraja S K, Jaenen P, Bogaerts W, Van Thourhout D, Dumon P, Baets R. Fabrication of photonic wire and crystal circuits in siliconon- insulator using 193-nm optical lithography. Journal of Lightwave Technology, 2009, 27(18): 4076–4083

[2] Dumon P, Bogaerts W, Wiaux V, Wouters J, Beckx S, Van Campenhout J, Taillaert D, Luysaert B, Bienstman P, Van Thourhout D, Baets R. Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photonics Technology Letters, 2004, 16(5): 1328–1330

[3] Basch E B, Egorov R, Gringeri S, Elby S. Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12 (4): 615–626

[4] Ng H,WangMR, Li D,Wang X, Martinez J, Panepucci R R, Pathak K. 1_4 wavelength reconfigurable photonic switch using thermally tuned microring resonators fabricated on silicon substrate. IEEE Photonics Technology Letters, 2007, 19(9): 704–706

[5] Yalcin A, Popat K C, Aldridge J C, Desai T A, Hryniewicz J, Chbouki N, Little B E, King O, Van V, Chu S, Gill D, Anthes- Washburn M, Unlu M S, Goldberg B B. Optical sensing of biomolecules using microring resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 148–155

[6] Dong P, Qian W, Liang H, Shafiiha R, Feng N, Feng D, Zheng X, Krishnamoorthy A V, Asghari M. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. Optics Express, 2010, 18(10): 9852–9858

[7] Guarino A, Poberaj G, Rezzonico D, Degl’innocenti R, Günter P. Electro-optically tunable microring resonators in lithium niobate. Nature Photonics, 2007, 1(7): 407–410

[8] Liu A, Liao L, Rubin D, Nguyen H, Ciftcioglu B, Chetrit Y, Izhaky N, Paniccia M. High-speed optical modulation based on carrier depletion in a silicon waveguide. Optics Express, 2007, 15(2): 660– 668

[9] Dong P, Qian W, Liang H, Shafiiha R, Feng D, Li G, Cunningham J E, Krishnamoorthy A V, Asghari M. Thermally tunable silicon racetrack resonators with ultralow tuning power. Optics Express, 2010, 18(19): 20298–20304

[10] Nishihara H, Haruna M, Suhara T. Optical Integrated Circuit. New York: McGraw-Hill 1985, 36–44

[11] Soref R A, Bennett B R. Electrooptical effects in silicon. IEEE Journal of Quantum Electronics, 1987, 23(1): 123–129

[12] Maune B, Lawson R, Gunn C, Scherer A, Dalton L. Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers. Applied Physics Letters, 2003, 83(23): 4689–4691

[13] Falco A D, Assanto G. Tunable wavelength-selective add–drop in liquid crystals on a silicon microresonator. Optics Communications, 2007, 279(1): 210–213

[14] De Cort W, Beeckman J, James R, Fernandez F A, Baets R, Neyts K. Tuning silicon-on-insulator ring resonators with in-plane switching liquid crystals. Journal of the Optical Society of America B, Optical Physics, 2011, 28(1): 79–85

[15] De Cort W, Beeckman J, Claes T, Neyts K, Baets R.Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding. Optics Letters, 2011, 36(19): 3876–3878

[16] Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211

[17] Anderson P A, Schmidt B S, Lipson M. High confinement in silicon slot waveguides with sharp bends. Optics Express, 2006, 14(20): 9197–9202

[18] Kargar A, Chao C. Design and optimization of waveguide sensitivity in slot microring sensors. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2011, 28(4): 596– 603

[19] Pfeifle J, Alloatti L, Freude W, Leuthold J, Koos C. Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding. Optics Express, 2012, 20(14): 15359–15376

[20] Barrios C A, Lipson M. Electrically driven silicon resonant light emitting device based on slot-waveguide. Optics Express, 2005, 13 (25): 10092–10101

[21] Gould M, Baehr-Jones T, Ding R, Huang S, Luo J, Jen A K, Fedeli J M, Fournier M, Hochberg M. Silicon-polymer hybrid slot waveguide ring-resonator modulator. Optics Express, 2011, 19(5): 3952–3961

[22] Desmet H, Neyts K, Baets R. Liquid crystal orientation on patterns etched in silicon on insulator. Integrated Optics, Silicon Photonics, and Photonic Integrated Circuits, 2006, 6183: 61831Z

[23] Ge Z, Wu T X, Lu R, Zhu X, Hong Q, Wu S. Comprehensive threedimensional dynamic modeling of liquid crystal devices using finite element method. Journal of Display Technology, 2005, 1(2): 194– 206

[24] Fallahkhair A B, Li K S, Murphy T E. Vector finite difference modesolver for anisotropic dielectric waveguides. Journal of Lightwave Technology, 2008, 26(11): 1423–1431

[25] Dell’Olio F, Passaro V M. Optical sensing by optimized silicon slot waveguides. Optics Express, 2007, 15(8): 4977–4993

[26] Donisi D, Bellini B, Beccherelli R, Asquini R, Gilardi G, Trotta M, d’ Alessandro A. A switchable liquid-crystal optical channel waveguide on silicon. IEEE Journal of Quantum Electronics, 2010, 46(5): 762–768

Jing DAI, Minming ZHAN, Feiya ZHOU, Deming LIU. Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range[J]. Frontiers of Optoelectronics, 2016, 9(1): 112. Jing DAI, Minming ZHANG, Feiya ZHOU, Deming LIU. Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range[J]. Frontiers of Optoelectronics, 2016, 9(1): 112.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!