激光与光电子学进展, 2018, 55 (10): 100004, 网络出版: 2018-10-14   

基于布里渊光时域分析的动态测量技术研究进展 下载: 753次

Research Progress of Dynamic Measurement Technology Based on Brillouin Optical Time-Domain Analysis
作者单位
华北电力大学电子与通信工程系, 河北 保定 071003
引用该论文

尚秋峰, 胡雨婷. 基于布里渊光时域分析的动态测量技术研究进展[J]. 激光与光电子学进展, 2018, 55(10): 100004.

Shang Qiufeng, Hu Yuting. Research Progress of Dynamic Measurement Technology Based on Brillouin Optical Time-Domain Analysis[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100004.

参考文献

[1] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601-8639.

[2] Nikles M, Thevenaz L, Robert P A. Brillouin gain spectrum characterization in single-mode optical fibers[J]. Journal of Lightwave Technology, 1997, 15(10): 1842-1851.

[3] Kurashima T, Horiguchi T, Tateda M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers[J]. Optics Letters, 1990, 15(18): 1038-1040.

[4] Bao X Y, Chen L. High performance BOTDA for long range sensing[J]. Proceedings of SPIE, 2011, 7982: 798206.

[5] Chaube P, Colpitts B G, Jagannathan D, et al. Distributed fiber-optic sensor for dynamic strain measurement[J]. IEEE Sensors Journal, 2008, 8(7): 1067-1072.

[6] Horiguchi T, Tateda M. BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory[J]. Journal of Lightwave Technology, 1989, 7(8): 1170-1176.

[7] Motil A, Hadar R, Sovran I, et al. Gain dependence of the linewidth of Brillouin amplification in optical fibers[J]. Optics Express, 2014, 22(22): 27535-27541.

[8] Bernini R, Minardo A, Zeni L. Dynamic strain measurement in optical fibers by stimulated Brillouin scattering[J]. Optics Letters, 2009, 34(17): 2613-2615.

[9] Peled Y, Motil A, Yaron L, et al. Distributed and dynamical Brillouin sensing in optical fibers[J]. Proceedings of SPIE, 2011, 7753: 775323.

[10] Peled Y, Motil A, Yaron L, et al. Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile[J]. Optics Express, 2011, 19(21): 19845-19854.

[11] Motil A, Danon O, Peled Y, et al. Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor[J]. IEEE Photonics Technology Letters, 2014, 26(8): 797-800.

[12] Ba D X, Wang B Z, Zhou D W, et al. Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA[J]. Optics Express, 2016, 24(9): 9781-9793.

[13] Yang G, Fan X Y, He Z Y. Strain dynamic range enlargement of slope-assisted BOTDA by using Brillouin phase-gain ratio[J]. Journal of Lightwave Technology, 2017, 35(20): 4451-4458.

[14] Voskoboinik A, Wang J, Shamee B, et al. SBS-based fiber optical sensing using frequency-domain simultaneous tone interrogation[J]. Journal of Lightwave Technology, 2011, 29(11): 1729-1735.

[15] Voskoboinik A, Wang J, Willner A, et al. Frequency-domain simultaneous tone interrogation for faster, sweep-free Brillouin distributed sensing [J]. Proceedings of SPIE, 2011, 7753: 77533G.

[16] Voskoboinik A, Yilmaz O F, Willner A W, et al. Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA)[J]. Optics Express, 2011, 19(26): B842-B847.

[17] Voskoboinik A, Willner A E, Tur M. Extending the dynamic range of sweep-free brillouin optical time-domain analyzer[J]. Journal of Lightwave Technology, 2015, 33(14): 2978-2985.

[18] 李存磊. 基于多波长光源的布里渊光纤传感系统研究[D]. 南京: 南京大学, 2012: 33-38.

    Li C L. Research on the system of Brillouin optical fiber sensor based on multi-wavelength light source[D]. Nanjing: Nanjing University, 2012: 33-38.

[19] Lu L D, Song Y J, Zhu F, et al. Coherent optical time domain reflectometry using three frequency multiplexing probe[J]. Optics and Lasers in Engineering, 2012, 50(12): 1735-1739.

[20] Li C L, Wang F, Lu Y G, et al. SNR enhancement in Brillouin optical time domain reflectometer using multi-wavelength coherent detection[J]. Electronics Letters, 2012, 48(18): 1139-1141.

[21] Zhang D Y, Nakarmi B, Zhang X P. Analysis of wavelength detuning, injected power, and injected mode effect on Fabry-Perot laser diode[J]. Proceedings of SPIE, 2014, 9270: 92700F.

[22] Jin C, Guo N, Feng Y H, et al. Scanning-free BOTDA based on ultra-fine digital optical frequency comb[J]. Optics Express, 2015, 23(4): 5277-5284.

[23] Peled Y, Motil A, Tur M. Fast Brillouin optical time domain analysis for dynamic sensing[J]. Optics Express, 2012, 20(8): 8584-8591.

[24] 王本章. 基于光学捷变频的动态分布式布里渊光纤传感技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016: 26-29.

    Wang B Z. Dynamic distributed Brillouin optical fiber sensing based on optical frequency-agile technology[D]. Harbin: Harbin Institute of Technology, 2016: 26-29.

[25] Dong Y K, Ba D, Jiang T F, et al. High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation[J]. IEEE Photonics Journal, 2013, 5(3): 2600407.

[26] Minardo A, Coscetta E, Coscetta A, et al. Sweep BOTDA for fast distributed sensing[J]. Proceedings of SPIE, 2017, 10323: 103237K.

[27] Kito C, Takahashi H, Toge K, et al. Simplified and fast acquirable BOTDA with frequency-swept probe pulse[J]. Proceedings of SPIE, 2017, 10323: 1032305.

[28] Kito C, Takahashi H, Toge K, et al. Dynamic strain measurement of 10-km fiber with frequency-swept pulsed BOTDA[J]. Journal of Lightwave Technology, 2017, 35(9): 1738-1743.

[29] Agrawal G P. 非线性光纤光学原理及应用[M]. 贾东方, 余震虹, 谈斌, 等, 译. 北京: 电子工业出版社, 2002: 223-240.

    Agrawal G P. Nonlinear fiber optics & applications of nonlinear fiber optics[M]. Jia D F, Yu Z H, Tan B, et al. Transl. Beijing: Publishing House of Electronics Industry, 2002: 223-240.

[30] Hotate K, Abe K, Song K Y. Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme[J]. IEEE Photonics Technology Letters, 2006, 18(24): 2653-2655.

[31] Deventer M O V, Boot A J. Polarization properties of stimulated Brillouin scattering in single-mode fibers[J]. Journal of Lightwave Technology, 1994, 12(4): 585-590.

[32] Zadok A, Zilka E, Eyal A, et al. Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers[J]. Optics Express, 2008, 16(26): 21692-21707.

[33] Wiggeren G D V, Roy R. Transmission of linearly polarized light through a single-mode fiber with random fluctuations of birefringence[J]. Applied Optics, 1999, 38(18): 3888-3892.

[34] 安琪, 李永倩, 张立欣. 布里渊光时域分析传感器扰偏性能研究[J]. 科学技术与工程, 2016, 16(31): 46-49.

    An Q, Li Y Q, Zhang L X. Research on the polarization performance of Brillouin optical time domain analysis sensor[J]. Science Technology and Engineering, 2016, 16(31): 46-49.

[35] Kurashima T, Tateda M, Horiguchi T, et al. Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state[J]. IEEE Photonics Technology Letters, 1997, 9(3): 360-362.

[36] 宋牟平, 鲍翀, 叶险峰. 基于正交偏振控制的布里渊光时域分析长距离分布式光纤传感器[J]. 中国激光, 2010, 37(3): 757-762.

    Song M P, Bao C, Ye X F. Brillouin optical time-domain analyzer based on orthogonal polarization control for long-distance distributed optical-fiber sensors[J]. Chinese Journal of Lasers, 2010, 37(3): 757-762.

[37] 宋牟平, 庄白云. 布里渊光时域分析传感器的消偏振衰落技术[J]. 光学学报, 2007, 27(4): 711-715.

    Song M P, Zhuang B Y. Polarization-induced fading elimination technique in Brillouin optical time-domain analysis sensor[J]. Acta Optica Sinica, 2007, 27(4): 711-715.

[38] Bao X Y, Zhang C, Li W H, et al. Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering[J]. Smart Materials and Structures, 2007, 17(1): 015003.

[39] Urricelqui J, López-Fernandino F, Sagues M, et al. Polarization diversity for Brillouin distributed fiber sensors based on a double orthogonal pump[J]. Proceedings of SPIE, 2014, 9157: 91576A.

[40] Urricelqui J, Zornoza A, Sagues M, et al. Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation[J]. Optics Express, 2012, 20(24): 26942-26949.

[41] López-Gil A, Dominguez-López A, Martin-López S, et al. Simple method for the elimination of polarization noise in BOTDA using balanced detection of orthogonally polarized Stokes and anti-Stokes probe sidebands[J], Proceedings of SPIE, 2014, 9157: 91573U.

[42] Smyth P P, Sayles A A, Back N R, et al. High-performance balanced dual-detector GaAs IC receiver for 565 Mbit/s optical heterodyne detection[J]. Electronics Letters, 1989, 25(21): 1414-1416.

[43] Dominguez-López A, López-Gil A, Martin-López, et al. Signal-to-noise ratio improvement in BOTDA using balanced detection[J]. IEEE Photonics Technology Letters, 2013, 26(4): 338-341.

[44] Zhang L, Wang Z N, Li J, et al. Ultra-long dual-sideband BOTDA with balanced detection[J]. Optics & Laser Technology, 2015, 68: 206-210.

[45] Minardo A, Coscetta A, Zeni L, et al. High-spatial resolution DPP-BOTDA by real-time balanced detection[J]. IEEE Photonics Technology Letters, 2014, 26(12): 1251-1254.

[46] Sovran I, Motil A, Tur M. Frequency-scanning BOTDA with ultimately fast acquisition speed[J]. IEEE Photonics Technology Letters, 2015, 27(13): 1426-1429.

[47] 尚秋峰, 毛训, 张立欣, 等. 一种新型瑞利BOTDA系统的研究[J]. 红外与激光工程, 2017, 46(1): 199-203.

    Shang Q F, Mao X, Zhang L X, et al. Research on a novel Rayleigh BOTDA system[J]. Infrared and Laser Engineering, 2017, 46(1): 199-203.

[48] 尚秋峰, 胡雨婷, 刘薇. 基于互相关卷积与高阶矩质心计算的布里渊散射谱特征提取[J]. 中国激光, 2017, 44(11): 1106011.

    Shang Q F, Hu Y T, Liu W. Feature extraction of Brillouin scattering spectrum based on cross-correlation convolution and high-order centroid calculation[J]. Chinese Journal of Lasers, 2017, 44(11): 1106011.

尚秋峰, 胡雨婷. 基于布里渊光时域分析的动态测量技术研究进展[J]. 激光与光电子学进展, 2018, 55(10): 100004. Shang Qiufeng, Hu Yuting. Research Progress of Dynamic Measurement Technology Based on Brillouin Optical Time-Domain Analysis[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100004.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!