激光与光电子学进展, 2018, 55 (10): 100004, 网络出版: 2018-10-14   

基于布里渊光时域分析的动态测量技术研究进展 下载: 753次

Research Progress of Dynamic Measurement Technology Based on Brillouin Optical Time-Domain Analysis
作者单位
华北电力大学电子与通信工程系, 河北 保定 071003
摘要
布里渊光时域分析(BOTDA)技术是基于光时域反射(OTDR)和受激布里渊散射(SBS)效应的一种重要的分布式光纤传感技术。由于具有多参量传感、精度高、距离长等优势, 该技术特别适用于大型基础设施、石油化工、电力通信网络和海底光缆等长距离、大范围的高危领域的故障定位和健康监测。但传统BOTDA只能用于静态测量, 其应用场合和发展前景受限。综述了目前基于BOTDA的各项动态测量技术, 详细介绍了其测量原理, 讨论了影响其传感速度的基本因素和研究难点, 并展望了未来BOTDA技术的发展前景。
Abstract
Brillouin optical time-domain analysis (BOTDA) is an important distributed optical fiber sensing technology based on optical time domain reflectometry (OTDR) and stimulated Brillouin scattering (SBS) effect. It has many advantages such as multi-parameter sensing, high accuracy, and long sensing distance. Accordingly, it is especially suitable for fault location and health monitoring in high-risk fields such as large infrastructure, petrochemical industry, power communication network and undersea optical fiber cable. The traditional BOTDA is only capable of static measurement, which seriously restricts its application scenarios and development prospects. The dynamic measurement techniques using BOTDA are summarized and the measurement principles are also introduced in detail. The basic factors and research difficulties which affect its sensing speed are discussed, and the future development prospect is forecasted.
参考文献

[1] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601-8639.

[2] Nikles M, Thevenaz L, Robert P A. Brillouin gain spectrum characterization in single-mode optical fibers[J]. Journal of Lightwave Technology, 1997, 15(10): 1842-1851.

[3] Kurashima T, Horiguchi T, Tateda M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers[J]. Optics Letters, 1990, 15(18): 1038-1040.

[4] Bao X Y, Chen L. High performance BOTDA for long range sensing[J]. Proceedings of SPIE, 2011, 7982: 798206.

[5] Chaube P, Colpitts B G, Jagannathan D, et al. Distributed fiber-optic sensor for dynamic strain measurement[J]. IEEE Sensors Journal, 2008, 8(7): 1067-1072.

[6] Horiguchi T, Tateda M. BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory[J]. Journal of Lightwave Technology, 1989, 7(8): 1170-1176.

[7] Motil A, Hadar R, Sovran I, et al. Gain dependence of the linewidth of Brillouin amplification in optical fibers[J]. Optics Express, 2014, 22(22): 27535-27541.

[8] Bernini R, Minardo A, Zeni L. Dynamic strain measurement in optical fibers by stimulated Brillouin scattering[J]. Optics Letters, 2009, 34(17): 2613-2615.

[9] Peled Y, Motil A, Yaron L, et al. Distributed and dynamical Brillouin sensing in optical fibers[J]. Proceedings of SPIE, 2011, 7753: 775323.

[10] Peled Y, Motil A, Yaron L, et al. Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile[J]. Optics Express, 2011, 19(21): 19845-19854.

[11] Motil A, Danon O, Peled Y, et al. Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor[J]. IEEE Photonics Technology Letters, 2014, 26(8): 797-800.

[12] Ba D X, Wang B Z, Zhou D W, et al. Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA[J]. Optics Express, 2016, 24(9): 9781-9793.

[13] Yang G, Fan X Y, He Z Y. Strain dynamic range enlargement of slope-assisted BOTDA by using Brillouin phase-gain ratio[J]. Journal of Lightwave Technology, 2017, 35(20): 4451-4458.

[14] Voskoboinik A, Wang J, Shamee B, et al. SBS-based fiber optical sensing using frequency-domain simultaneous tone interrogation[J]. Journal of Lightwave Technology, 2011, 29(11): 1729-1735.

[15] Voskoboinik A, Wang J, Willner A, et al. Frequency-domain simultaneous tone interrogation for faster, sweep-free Brillouin distributed sensing [J]. Proceedings of SPIE, 2011, 7753: 77533G.

[16] Voskoboinik A, Yilmaz O F, Willner A W, et al. Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA)[J]. Optics Express, 2011, 19(26): B842-B847.

[17] Voskoboinik A, Willner A E, Tur M. Extending the dynamic range of sweep-free brillouin optical time-domain analyzer[J]. Journal of Lightwave Technology, 2015, 33(14): 2978-2985.

[18] 李存磊. 基于多波长光源的布里渊光纤传感系统研究[D]. 南京: 南京大学, 2012: 33-38.

    Li C L. Research on the system of Brillouin optical fiber sensor based on multi-wavelength light source[D]. Nanjing: Nanjing University, 2012: 33-38.

[19] Lu L D, Song Y J, Zhu F, et al. Coherent optical time domain reflectometry using three frequency multiplexing probe[J]. Optics and Lasers in Engineering, 2012, 50(12): 1735-1739.

[20] Li C L, Wang F, Lu Y G, et al. SNR enhancement in Brillouin optical time domain reflectometer using multi-wavelength coherent detection[J]. Electronics Letters, 2012, 48(18): 1139-1141.

[21] Zhang D Y, Nakarmi B, Zhang X P. Analysis of wavelength detuning, injected power, and injected mode effect on Fabry-Perot laser diode[J]. Proceedings of SPIE, 2014, 9270: 92700F.

[22] Jin C, Guo N, Feng Y H, et al. Scanning-free BOTDA based on ultra-fine digital optical frequency comb[J]. Optics Express, 2015, 23(4): 5277-5284.

[23] Peled Y, Motil A, Tur M. Fast Brillouin optical time domain analysis for dynamic sensing[J]. Optics Express, 2012, 20(8): 8584-8591.

[24] 王本章. 基于光学捷变频的动态分布式布里渊光纤传感技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016: 26-29.

    Wang B Z. Dynamic distributed Brillouin optical fiber sensing based on optical frequency-agile technology[D]. Harbin: Harbin Institute of Technology, 2016: 26-29.

[25] Dong Y K, Ba D, Jiang T F, et al. High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation[J]. IEEE Photonics Journal, 2013, 5(3): 2600407.

[26] Minardo A, Coscetta E, Coscetta A, et al. Sweep BOTDA for fast distributed sensing[J]. Proceedings of SPIE, 2017, 10323: 103237K.

[27] Kito C, Takahashi H, Toge K, et al. Simplified and fast acquirable BOTDA with frequency-swept probe pulse[J]. Proceedings of SPIE, 2017, 10323: 1032305.

[28] Kito C, Takahashi H, Toge K, et al. Dynamic strain measurement of 10-km fiber with frequency-swept pulsed BOTDA[J]. Journal of Lightwave Technology, 2017, 35(9): 1738-1743.

[29] Agrawal G P. 非线性光纤光学原理及应用[M]. 贾东方, 余震虹, 谈斌, 等, 译. 北京: 电子工业出版社, 2002: 223-240.

    Agrawal G P. Nonlinear fiber optics & applications of nonlinear fiber optics[M]. Jia D F, Yu Z H, Tan B, et al. Transl. Beijing: Publishing House of Electronics Industry, 2002: 223-240.

[30] Hotate K, Abe K, Song K Y. Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme[J]. IEEE Photonics Technology Letters, 2006, 18(24): 2653-2655.

[31] Deventer M O V, Boot A J. Polarization properties of stimulated Brillouin scattering in single-mode fibers[J]. Journal of Lightwave Technology, 1994, 12(4): 585-590.

[32] Zadok A, Zilka E, Eyal A, et al. Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers[J]. Optics Express, 2008, 16(26): 21692-21707.

[33] Wiggeren G D V, Roy R. Transmission of linearly polarized light through a single-mode fiber with random fluctuations of birefringence[J]. Applied Optics, 1999, 38(18): 3888-3892.

[34] 安琪, 李永倩, 张立欣. 布里渊光时域分析传感器扰偏性能研究[J]. 科学技术与工程, 2016, 16(31): 46-49.

    An Q, Li Y Q, Zhang L X. Research on the polarization performance of Brillouin optical time domain analysis sensor[J]. Science Technology and Engineering, 2016, 16(31): 46-49.

[35] Kurashima T, Tateda M, Horiguchi T, et al. Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state[J]. IEEE Photonics Technology Letters, 1997, 9(3): 360-362.

[36] 宋牟平, 鲍翀, 叶险峰. 基于正交偏振控制的布里渊光时域分析长距离分布式光纤传感器[J]. 中国激光, 2010, 37(3): 757-762.

    Song M P, Bao C, Ye X F. Brillouin optical time-domain analyzer based on orthogonal polarization control for long-distance distributed optical-fiber sensors[J]. Chinese Journal of Lasers, 2010, 37(3): 757-762.

[37] 宋牟平, 庄白云. 布里渊光时域分析传感器的消偏振衰落技术[J]. 光学学报, 2007, 27(4): 711-715.

    Song M P, Zhuang B Y. Polarization-induced fading elimination technique in Brillouin optical time-domain analysis sensor[J]. Acta Optica Sinica, 2007, 27(4): 711-715.

[38] Bao X Y, Zhang C, Li W H, et al. Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering[J]. Smart Materials and Structures, 2007, 17(1): 015003.

[39] Urricelqui J, López-Fernandino F, Sagues M, et al. Polarization diversity for Brillouin distributed fiber sensors based on a double orthogonal pump[J]. Proceedings of SPIE, 2014, 9157: 91576A.

[40] Urricelqui J, Zornoza A, Sagues M, et al. Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation[J]. Optics Express, 2012, 20(24): 26942-26949.

[41] López-Gil A, Dominguez-López A, Martin-López S, et al. Simple method for the elimination of polarization noise in BOTDA using balanced detection of orthogonally polarized Stokes and anti-Stokes probe sidebands[J], Proceedings of SPIE, 2014, 9157: 91573U.

[42] Smyth P P, Sayles A A, Back N R, et al. High-performance balanced dual-detector GaAs IC receiver for 565 Mbit/s optical heterodyne detection[J]. Electronics Letters, 1989, 25(21): 1414-1416.

[43] Dominguez-López A, López-Gil A, Martin-López, et al. Signal-to-noise ratio improvement in BOTDA using balanced detection[J]. IEEE Photonics Technology Letters, 2013, 26(4): 338-341.

[44] Zhang L, Wang Z N, Li J, et al. Ultra-long dual-sideband BOTDA with balanced detection[J]. Optics & Laser Technology, 2015, 68: 206-210.

[45] Minardo A, Coscetta A, Zeni L, et al. High-spatial resolution DPP-BOTDA by real-time balanced detection[J]. IEEE Photonics Technology Letters, 2014, 26(12): 1251-1254.

[46] Sovran I, Motil A, Tur M. Frequency-scanning BOTDA with ultimately fast acquisition speed[J]. IEEE Photonics Technology Letters, 2015, 27(13): 1426-1429.

[47] 尚秋峰, 毛训, 张立欣, 等. 一种新型瑞利BOTDA系统的研究[J]. 红外与激光工程, 2017, 46(1): 199-203.

    Shang Q F, Mao X, Zhang L X, et al. Research on a novel Rayleigh BOTDA system[J]. Infrared and Laser Engineering, 2017, 46(1): 199-203.

[48] 尚秋峰, 胡雨婷, 刘薇. 基于互相关卷积与高阶矩质心计算的布里渊散射谱特征提取[J]. 中国激光, 2017, 44(11): 1106011.

    Shang Q F, Hu Y T, Liu W. Feature extraction of Brillouin scattering spectrum based on cross-correlation convolution and high-order centroid calculation[J]. Chinese Journal of Lasers, 2017, 44(11): 1106011.

尚秋峰, 胡雨婷. 基于布里渊光时域分析的动态测量技术研究进展[J]. 激光与光电子学进展, 2018, 55(10): 100004. Shang Qiufeng, Hu Yuting. Research Progress of Dynamic Measurement Technology Based on Brillouin Optical Time-Domain Analysis[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100004.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!