光学 精密工程, 2014, 22 (10): 2765, 网络出版: 2014-11-06   

弹性支撑式压电骨传导听觉装置

Piezoelectric bone-conduction hearing device with elastic support
作者单位
1 吉林大学 机械科学与工程学院,吉林 长春 130022
2 浙江师范大学 精密机械研究所,浙江 金华 321004
摘要
提出一种以圆形轮式片状弹簧作为中间弹性支撑的新型压电骨传导听觉装置以提高它的低频响应性能。通过对听觉装置的动力学建模,理论分析了由支撑弹簧和压电振子组成的振动系统;选择厚度为0.9 mm的片弹簧作为听觉装置的支撑元件,设计了圆形轮式片状支撑弹簧。最后,制作了弹性支撑式压电骨传导听觉装置的试验样机,搭建了试验测试系统,对样机的幅频特性、响频特性和噪频特性进行了试验测试。实验结果显示:当电源激励信号频率为550 Hz时,压电振子的最大振动幅值可达22.21 μm;中低频区域的响度为60~70 dB,中高频区域的响度稳定在80 dB左右;在离听觉装置1 m远处测试到听觉装置的噪声大小为35~40 dB。得到的数据表明:圆形中间弹性支撑式压电骨传导听觉装置具有较好的低频响应性能,其响度基本能够满足佩戴者的听力要求,近距离噪声也不大。
Abstract
A novel circular piezoelectric bone-conduction hearing device with a leaf spring support was proposed to improve its lower-frequency response performance. The equivalent dynamic system containing a support spring and a piezoelectric vibrator was analyzed theoretically by building the dynamic-model of the hearing device. The structure of the support spring was designed after selecting an optimum spring with the thickness of 0.9 mm as the support element. A prototype of piezoelectric bone-conduction hearing device was developed and the test system was built. The experimental test on amplitude-frequency characteristics and loudness-frequency characteristics were conducted. The results show that the maximum response amplitude of the piezoelectric system has reached up to 22.21 μm at 550 Hz. Furthermore, the loudness of the hearing device is between 60 dB and 70 dB in the low-frequency region, and that is stabilized at about 80 dB in the high-frequency region.The noise of the device is within a basically reasonable level of 35-40 dB at one meter away.It concludes that the response amplitude of the hearing device is larger in the low-frequency region; the loudness of the device basically meets the requirements of the wearers with a smaller noise.
参考文献

[1] SABINE R,STLI P,HKANSSON B. Hearing one’s own voice during phoneme vocalization Transmission by air and bone conduction [J]. Journal of the Acoustical Society of America, August 2010,128(2):751-762.

[2] CLAVIER O H,NORRIS J A,DIETZ A J. A comparison of the nonlinear response of the ear and to bone-conduction sound[J]. Hearing Research,2010,263:224-232.

[3] BHALLA S, BAJAJ S. Bone Characterization using piezotransducers as biomedical sensors [J]. Strain,2008,44(6):475-478.

[4] 刘泊,郭建英,孙永全.压电陶瓷微位移驱动器建模与控制[J].光学精密工程,2013,21(6):1503-1509.

    LIU B, GUO J Y, SUN Y Q. Modeling and control for PZT micro-displacement actuator[J]. Opt. Precision Eng., 2013,21(6):1503-1509. (in Chinese)

[5] 赖志林,刘向东,耿洁,等.压电陶瓷执行器迟滞的滑模逆补偿控制[J]. 光学精密工程,2011,19(6):1281-1290.

    LAI ZH L, LIU X D, GENG J, et al..Sliding mode control of hysteresis of piezoceramic actrator based on inverse preisach compensation [J]. Opt. Precision Eng.,2011,19(6):1281-1290. (in Chinese)

[6] 朱猛,黄战华,王小军,等.香味动态散斑法测量压电陶瓷位移特性曲线[J]. 光学精密工程,2011, 19(4):844-849.

    ZHU M, HUANG ZH H, WANG X J, et al.. Measurement of piezoelectric displacement characteristic curves using dynamic speckle correlation [J]. Opt. Precision Eng., 2011,19(4):844-849. (in Chinese)

[7] HONG E P,PARK I Y,SEONG K W,et al.. Evaluation of an implantable piezoelectric floating mass transducer for sensorineural hearing loss[J]. Mechatronics, 2009,19:965-971.

[8] LIU H G,TA N,RAO ZH SH.Voltage property analysis of piezoelectric floating mass actuator used in middle ear implant[J]. Journal of Southeast University (English Edition),2009,125(4):496-500.

[9] 蒋德龙,程光明,温建明,等. 矩形结构压电晶片式骨传导听觉装置研究[J]. 机械设计与制造,2012,8:104-106.

    JIANG D L, CHENG G M, WEN J M, et al.. Study on piezoelectric bone conduction hearing equipment with rectangle structure[J]. Machinery Design & Manufacture, 2012,8:104-106. (in Chinese)

[10] NOIMANEE S, WATTANASIRICHAIGOON S. Development of vibration interface to skin ear hearing devices using PB(TI0.48ZR0.52)O3[J]. The 3rd International Symposium on Biomedical Engineering,2008:387-390.

[11] ADAMSON R B A, BANCE M,BROWN J A. A piezoelectric bone-conduction bending hearing actuator [J]. J. Acoust. Soc. Am.,2010(10):2003-2008.

[12] 肖永福.中间支撑和悬臂结构压电式骨传导助听装置的研究[D].长春:吉林大学,2009.

    XIAO Y F. Study of core fixing and rectangle cantilever Structure Piezoelectric Bone conduction Hearing aid devices[D]. Chang Chun:Jilin University,2009. (in Chinese)

[13] 孙景阳,程光明,吴博达,等.基于圆形压电振子的骨传导听觉装置[J]. 吉林大学学报(工学版),2010,40(1):1671-5494.

    SUN J Y, CHENG G M, WU B D, et al..Circular bimorph piezoelectric bone-conduction hearing device [J]. Journal of Jilin University (Engineering and Technogy Edition) , 2010,34(4):1671-5494.(in Chinese)

[14] 陈宇东,编.结构振动分析[M].长春:吉林大学出版社,2007.

    CHEN Y D. Structural Vibration Analysis[M].CHANG Chun: Jilin University Press,2007. (in Chinese)

[15] 张义民,编.机械振动力学[M].长春:吉林科学技术出版社,2002.

    ZHANG Y M. Mechanical vibration mechanics[M]. Chang Chun: Jilin Science and Technology Press,2002. (in Chinese)

曾平, 陈艳辉, 高莹莹, 董景石, 李彦鹏, 程光明. 弹性支撑式压电骨传导听觉装置[J]. 光学 精密工程, 2014, 22(10): 2765. ZENG Ping, CHEN Yan-hui, GAO Ying-ying, DONG Jing-shi, LI Yan-peng, CHENG Guang-ming. Piezoelectric bone-conduction hearing device with elastic support[J]. Optics and Precision Engineering, 2014, 22(10): 2765.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!