光学 精密工程, 2017, 25 (12): 3137, 网络出版: 2018-01-10   

柔性硫系玻璃红外光纤传像束的制备与性能测试

Fabrication and optical performances measurements of flexible chalcogenide imaging fiber bundles
作者单位
1 中国科学院 西安光学精密机械研究所, 陕西 西安 710119
2 中国科学院大学 材料科学与光电技术学院,北京 101408
摘要
讨论了红外光纤传像束的学术意义和制备工艺,制备了一种硫系玻璃红外光纤传像束并进行了专门的性能测试。选用As40S58Se2、As40S60作为芯棒和皮管玻璃组分,采用管棒法拉制成纤,利用人机结合的排丝工艺制备出了单丝直径为50 μm,纤芯直径为40 μm,576元正方形排列的红外光纤传像束。搭建了相应的实验测试平台, 对光纤束排列规则度、断丝率、光学效率及传像束引起系统调制传递函数(MTF)下降量等指标进行了测试。测试表明,传像束断丝率为2.7%,衰减损耗低于0.5 dB/m,光学效率约为31%,在红外光纤传像系统中光纤传像束引起的MTF下降量小于10%。最后,利用研制的红外传像束完成了红外成像实验,结果表明,红外光纤传像束能够实现良好的红外成像。
Abstract
The academic meanings of infrared imaging fiber bundles were researched and their fabrication technologies were given. A kinds of flexible chalcogenide infrared imaging fiber bundles were fabricated, and their characteristics were tested. By taking As40S58Se2 and As40S60 as the rod and tube materials, the fibers were drawn by rod-in-tube technique. The infrared imaging fiber bundle with a core diameter of 40 μm and a cladding diameter of 50 μm was prepared by man-machine-integration technique and it shows squared arrangement which incorporates 576 individual fibers. A special experimental equipment was constructed. The properties of this imaging fiber bundle including spatial arrangement and shaping, blind-fiber ratio and optical transmission efficiency were measured, and the decrease of Modulation Transfer Function (MTF) in the system caused by infrared imaging fiber bundle were measured. Experimental results indicate that the fiber bundle shows a good spatial arrangement and shaping. The blind-fiber ratio is 2.7%, fiber attenuation loss is lower than 0.5 dB/m, and the optical efficiency is almost 31%. Moreover, The decrease of MTF resulted from the fiber bundle in the system is less than 10%. Finally, an infrared imaging experiment was implemented, and the result shows that fine infrared thermal images have been delivered through this system.
参考文献

[1] HUANG CH H, KINO S, KATAGIRI T, et al.. Remote Fourier transform-infrared spectral imaging system with hollow-optical fiber bundle[J]. Applied Optics, 2012, 51(29): 6913-6916.

[2] LU P, BAO X Y, WHIDDEN T, et al.. Application of a mid-infrared fiber bundle in remote measurement of gas concentrations in a chemical vapor deposition chamber[J]. Applied Optics, 2000, 39(7): 1112-1117.

[3] 戴世勋, 陈惠广, 李茂忠, 等. 硫系玻璃及其在红外光学系统中的应用[J]. 红外与激光工程, 2012, 41(4): 847-852.

    DAI SH X, CHEN H G, LI M ZH, et al.. Chalcogenide glasses and their infrared optical applications[J]. Infrared and Laser Engineering, 2012, 41(4): 847-852. (in Chinese)

[4] SAITO M, TAKIZAWA M, SAKURAGI S, et al.. Infrared image guide with bundled As-S glass fibers[J]. Applied Optics, 1985, 24(15): 2304-2308.

[5] LAVI Y, MILLO A, KATZIR A. Flexible ordered bundles of infrared transmitting silver-halide fibers: Design, fabrication, and optical measurements[J]. Applied Optics, 2006, 45(23): 5808-5814.

[6] HILTON R. Chalcogenide Glasses for Infrared Optics[M]. Texas: The McGraw-Hill Companies, 2010: 181-210.

[7] 祝清德, 王训四, 聂秋华, 等. 红外硫系光纤传像束研究进展[J]. 硅酸盐通报, 2014, 33(11): 2873-2880.

    ZHU Q D, WANG X S, NIE Q H, et al.. Research progress of infrared chalcogenide optical fiber imaging bundles[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(11): 2873-2880. (in Chinese)

[8] KOBAYASHI T, KATAGIRI T, MATSUURA Y. Multi-element hollow-core anti-resonant fiber for infrared thermal imaging[J]. Optics Express, 2016, 24(23): 26565-26574.

[9] TAO G M, EBENDORFF-HEIDEPRIEM H, STOLYAROV A M, et al.. Infrared fibers[J]. Advances in Optics and Photonics, 2015, 7: 379-458.

[10] ARTYUSHENKO V, BOCHARNIKOV A, SAKHAROVAT, et al.. Mid-infrared fiber optics for 1-18 μm range[J]. Fiber Optics, 2014, 9(4): 35-39.

[11] 杨克武, 魏国盛, 吴佩兰. As—S玻璃红外光纤传像束[J]. 应用光学, 1999, 20(1): 32-35.

    YANG K W, WEI G SH, WU P L. Image bundle of As-S glass infrared fibers[J]. Journal of Applied Optics, 1999, 20(1): 32-35. (in Chinese)

[12] ZHANG B, ZHAI CH CH, QI S SH, et al.. High-resolution chalcogenide fiber bundles for infrared imaging[J]. Optics Letters, 2015, 40(19): 4684-4387.

[13] 翟诚诚, 张斌, 祁思胜, 等. 柔性硫系玻璃光纤传像束的制备及性能研究[J]. 光学学报, 2015, 35(8): 0806005.

    ZHAI CH CH, ZHANG B, QI S SH, et al.. Fabrication and properties of flexible chalcognide fiber image bundles[J]. Acta Optica Sinica, 2015, 35(8): 0806005. (in Chinese)

[14] 刘硕, 唐骏州, 刘自军, 等. 低损耗硫系玻璃光纤的挤压制备及其性能研究[J]. 光学学报, 2016, 36(10): 1006002.

    LIU SH, TANG J ZH, LIU Z J, et al.. Fabrication and properties of low-loss chalcogenide optical fiber based on the extrusion method[J]. Acta Optica Sinica, 2016, 36(10):1006002. (in Chinese)

[15] 赵意意, 杨建峰, 闫兴涛, 等. 推扫式红外光纤传像光学系统研究[J]. 光子学报, 2014, 43(2): 0222002.

    ZHAO Y Y, YANG J F, YAN X T, et al.. Study of push-broom infrared fiber image transmission system[J]. Acta Photonica Sinica, 2014, 43(2): 0222002. (in Chinese)

[16] 谷立山, 陈晓苹. 传像光纤束透过率测量方法研究[J]. 电子测量与仪器学报, 2015, 29(8): 1231-1235.

    GU L SH, CHEN X P. Study on transmittance measurement for image-carrying optical fiber bundle[J]. Journal of Electronic Measurement and Instrumentation, 2015, 29(8): 1231-1235. (in Chinese)

[17] 李航, 颜昌翔, 于平, 等. 红外成像系统的调制传递函数测试[J]. 光学 精密工程, 2016, 24(4): 698-708.

    LI H, YAN CH X, YU P, et al.. Measurement of modulation transfer function for IR imaging system[J]. Opt. Precision Eng., 2016, 24(4): 698-708. (in Chinese)

[18] 李坤宇. 无源光纤传像系统传像质量的评价与优化研究[D]. 南京: 南京理工大学, 2001.

    LI K Y. Studying of image transmitting quality evaluation and optimization in passive optical fiber image transmission system[D]. Nanjing: Nanjing University of Science and Technology, 2001. (in Chinese)

[19] 王慧, 向阳, 禹秉熙. 线列光纤传像束的调制传递函数评价方法及检测[J]. 光学 精密工程, 2005, 13(2): 185-190.

    WANG H, XIANG Y, YU B X. Comprehensive estimating and measuring method of line-array fiber-optic image bundles based on the modulation transfer function[J]. Opt. Precision Eng., 2005, 13(2): 185-190. (in Chinese)

王形锋, 杨建峰, 闫兴涛, 陈国庆, 许彦涛. 柔性硫系玻璃红外光纤传像束的制备与性能测试[J]. 光学 精密工程, 2017, 25(12): 3137. WANG Xing-feng, YANG Jian-feng, YAN Xing-tao, CHEN Guo-qing, XU Yan-tao. Fabrication and optical performances measurements of flexible chalcogenide imaging fiber bundles[J]. Optics and Precision Engineering, 2017, 25(12): 3137.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!