中国激光, 2017, 44 (7): 0703004, 网络出版: 2017-07-05   

二维非线性光学材料与器件研究进展 下载: 2043次

Research Progress of Two-Dimensional Nonlinear Optical Materials and Devices
作者单位
1 中国科学院上海光学精密机械研究所中科院强激光材料重点实验室, 上海 201800
2 西北大学化学与材料科学学院, 陕西 西安 710127
引用该论文

王俊, 张晓艳, 张赛锋, 赵培均, 张龙. 二维非线性光学材料与器件研究进展[J]. 中国激光, 2017, 44(7): 0703004.

Wang Jun, Zhang Xiaoyan, Zhang Saifeng, Zhao Peijun, Zhang Long. Research Progress of Two-Dimensional Nonlinear Optical Materials and Devices[J]. Chinese Journal of Lasers, 2017, 44(7): 0703004.

参考文献

[1] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.

[2] Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): 1226419.

[3] Chhowalla M, Shin H S, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275.

[4] Xu M S, Liang T, Shi M M, et al. Graphene-like two-dimensional materials[J]. Chemical Review, 2013, 113(5): 3766-3798.

[5] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.

[6] Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 2013, 499(7459): 419-425.

[7] Eda G, Maier S A. Two-dimensional crystals: managing light foroptoelectronics[J]. ACS Nano 2013, 7(7): 5660-5665.

[8] Hsu A, Wang H, Shin Y C, et al. Large-area 2-D electronics: materials, technology, and devices[J]. Proceedings of the IEEE, 2013, 101(7): 1638-1652.

[9] Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, et al. 2D materials: to graphene and beyond[J]. Nanoscale, 2011, 3(1): 20-30.

[10] Wang Q H,Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.

[11] Sun Z P, Martinez A, Wang F. Optical modulators with 2D layered materials[J]. Nature Photonics, 2016, 10(4): 227-238.

[12] Li L K, Kim J,Jin C. Direct observation of the layer-dependent electronic structure in phosphorene[J]. Nature Nanotechnology, 2017, 12(1): 21-25.

[13] Morita A. Semiconducting black phosphorus[J]. Applied Physics A: Materials Science & Processing, 1986, 39(4): 227-242.

[14] Hanlon D, Backes C, Doherty E, et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics[J]. Nature Communications, 2015, 6: 8563.

[15] Zhang X, Xie H M, Liu Z, et al. Black phosphorus quantum dots[J]. Angewandte Chemie(International Edition), 2015, 54(12): 3653-3657.

[16] Lewis E A, Brent J R, Derby B, et al. Solution processing of two-dimensional black phosphorus[J]. Chemical Communications, 2017, 53(9): 1445-1458.

[17] Wang Y, Huang G, Mu H, et al. Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension[J]. Applied Physics Letters, 2015, 107(9): 091905.

[18] Xu Y, Wang Z,Guo Z, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229.

[19] Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805.

[20] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150.

[21] Splendiani A, Sun L, Zhang Y B, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters,2010, 10(4): 1271-1275.

[22] Matte H S S R, Gomathi A, Manna A K, et al. MoS2 and WS2 analogues of graphene[J]. Angewandte Chemie(International Edition), 2010, 49(24): 4059-4062.

[23] Coleman J N, Lotya M, O′Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571.

[24] Smith R J, King P J, Lotya M, et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions[J]. Advanced Materials, 2011, 23(44): 3944-3948.

[25] Lee K, Kim H Y, Lotya M, et al. Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation[J]. Advance Materials, 2011, 23(36): 4178-4182.

[26] Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors[J]. ACS Nano 2012, 6(1):74-80.

[27] Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Letters, 2011, 11(12): 5111-5116.

[28] Cao T, Wang G, Han W P, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide[J]. Nature Communications, 2012, 3: 887.

[29] Mak K F, He K L, Shan J, et al. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nature Nanotechnology, 2012, 7: 494-498.

[30] Zeng H, Dai J F, Yao W, et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nature Nanotechnology, 2012, 7: 490-493.

[31] Kumar N, He J Q, He D W, et al. Charge carrier dynamics in bulk MoS2 crystal studied by transient absorption microscopy[J]. Journal of Applied Physics, 2013, 113(13): 133702.

[32] Wang K P, Wang J, Fan J T, et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J]. ACS Nano, 2013, 7(10): 9260-9267.

[33] Malard L M, Alencar T V, Barboza A P M, et al. Observation of intense second harmonic generation from MoS2 atomic crystals[J]. Physical Review B, 2013, 87(20): 201401.

[34] Wang R, Chien H C, Kumar J, et al. Third-harmonic generation in ultrathin films of MoS2[J]. ACS Applied Materials & Interfaces, 2013, 6(1): 314-318.

[35] Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Science of the United States of America, 2005, 102(30): 10451-10453.

[36] Liu H, Neal A T, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.

[37] Li L, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.

[38] Dines M B. Lithium intercalation via n-butyllithium of the layered transition metal dichalcogenides[J]. Materials Research Bulletin, 1975, 10(4): 287-291.

[39] Matte H S S R, Gomathi A, Manna A K, et al. MoS2 and WS2 analogues of graphene[J]. Angewandte Chemie (International Edition), 2010, 122(24): 4153-4156.

[40] Zeng Z Y, Yin Z Y, Huang X, et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication[J]. Angewandte Chemie (International Edition), 2011, 50(47): 11093-11097.

[41] Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): 1226419.

[42] Huafeng Y, Withers F, Gebremedhn E, et al. Dielectric nanosheets made by liquid-phase exfoliation in water and their use in graphene-based electronics[J]. 2D Materials, 2014, 1(1): 011012.

[43] Lotya M, Hernandez Y, King P J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions[J]. Journal of the American Chemical Society, 2009, 131(10): 3611-3620.

[44] Stan M C, von Zamory J, Passerini S, et al. Puzzling out the origin of the electrochemical activity of black P as a negative electrode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(17): 5293-5300.

[45] Joensen P, Frindt R F, Morrison S R, et al. Single-layer MoS2[J]. Materials Research Bulletin, 1986, 21(4): 457-461.

[46] Zhang X Y, Zhang S F, Chang C X, et al. Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance[J]. Nanoscale, 2015, 7: 2978-2986.

[47] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2011, 412: 697-698.

[48] Joglekar A P, Liu H H, Meyhofer E, et al. Optics at critical intensity: applications to nanomorphing[J]. Proceedings of National Academy of Science of the United States of America, 2004, 101(16): 5856-5861.

[49] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2: 219-225.

[50] Han G H,Chae S J, Kim E S, et al. Laser thinning for monolayer graphene formation: heat sink and interference effect[J]. ACS Nano, 2011, 5(1): 263-268.

[51] Castellanos-Gomez A, Barkelid M, Goossens A M, et al. Laser-thinning of MoS2: on demand generation of a single layer semiconductor[J]. Nano Letters, 2012, 12(6): 3187-3192.

[52] Peng Y, Meng Z Y, Zhong C, et al. Hydrothermal synthesis of MoS2 and its pressure-related crystallization[J]. Journal of Solid State Chemistry, 2001, 159(1): 170-173.

[53] Peng Y, Meng Z Y, Zhong C, et al. Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2[J]. Chemistry Letters, 2001, 30(8): 772-773.

[54] Matte H S S R, Plowman B, Datta R, et al. Graphene analogues of layered metal selenides[J]. Dalton Transactions, 2011, 40: 10322-10325.

[55] Liu K K, Zhang W J, Lee Y H, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates[J]. Nano Letters, 2012, 12(3): 1538-1544.

[56] Zhan Y, Liu Z,Najmaei S, et al. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate[J]. Small, 2012, 8(7): 966-971.

[57] Lee Y H, Zhang X Q, Zhang W J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 2012, 24(17): 2320-2325.

[58] Shanmugam M, Bansal T, Durcan C A, et al. Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell[J]. Applied Physics Letters, 2012, 100(15): 153901.

[59] Lee H S, Min S W, Chang Y G, et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Letters, 2012, 12(7): 3695-3700.

[60] Li H, Yin Z Y, He Q Y, et al. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature[J]. Small, 2012, 8: 63-67.

[61] Carladous A, Coratger R, Ajustron F, et al. Light emission from spectral analysis of Au/MoS2 nanocontacts stimulated by scanning tunneling microscopy[J]. Physical Review B, 2002, 66: 045401.

[62] Zhu Z F,Coratger R, Ajustron F, et al. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors[J]. Physical Review B, 2011, 84: 153402.

[63] Xiao D, Liu G B, Feng W X, et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides[J]. Physical Review Letters, 2012, 108: 196802.

[64] Sundaram R S, Engel M, Lombardo A, et al. Electroluminescence in single layer MoS2[J]. Nano Letters, 2013, 13: 1416-1421.

[65] Qiu H, Pan L J, Yao Z N, et al. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances[J]. Applied Physics Letters, 2012, 100(12): 123104 .

[66] Korn T, Heydrich S, Hirmer M, et al. Low-temperature photocarrier dynamics in monolayer MoS2[J]. Applied Physics Letters, 2011, 99: 102109.

[67] Wang R, Ruzicka B A, Kumar N, et al. Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide[J]. Physical Review B, 2012, 86: 045406.

[68] Lagarde D, Bouet L, Mari X, et al. Carrier and polarization dynamics in monolayer MoS2[J]. Physical Review Letters, 2014, 112: 047401.

[69] Dal C S, Bottegoni F, Pogna E A A, et al. Ultrafast valley relaxation dynamics in monolayer MoS2 probed by nonequilibrium optical techniques[J]. Physical Review B, 2015, 92: 235425.

[70] Cabo A G, Miwa J A,Groslashnborg S S, et al. Observation of ultrafast free carrier dynamics in single layer MoS2[J]. Nano Letters, 2015, 15: 5883-5887.

[71] Kar S, Su Y, Nair R, et al. Probing photoexcited carriers in a few-layer MoS2 laminate by time-resolved optical pump-terahertz probe spectroscopy[J]. ACS Nano, 2015, 9(12): 12004-12010.

[72] Robert C, Lagarde D, Cadiz F, et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers[J]. Physical Review B, 2016, 93: 205423.

[73] Wang J, Hernandez Y,Lotya M, et al. Broadband nonlinear optical response of graphene dispersions[J]. Advanced Materials, 2009, 21: 2430-2435.

[74] Cheng X, Dong N N, Li B, et al. Controllable broadband nonlinear optical response of graphene dispersions by tuning vacuum pressure[J]. Optics Express, 2013, 21: 16486-16493.

[75] Feng Y Y, Dong N N, Wang G Z, et al. Saturable absorption behavior of free-standing graphene polymer composite films over broad wavelength and time ranges[J]. Optics Express, 2015, 23: 559-569.

[76] Feng Y Y, Dong N N, Li Y X, et al. Host matrix effect on the near infrared saturation performance of graphene absorbers[J]. Optical Materials Express, 2015, 5: 802-808.

[77] Wang K P, Feng Y Y, Chang C X, et al. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors[J]. Nanoscale, 2014, 6: 10530-10535.

[78] Li Y X, Dong N N, Zhang S F, et al. Giant two-photon absorption in monolayer MoS2[J]. Laser Photonics Reviews,2015, 9: 427-434.

[79] Zhang S F, Dong N N, McEvoy N, et al. Direct observation of degenerate two photon absorption and its saturation of WS2 and MoS2 monolayer and few-layer films[J]. ACS Nano, 2015, 9: 7142-7150.

[80] Zhang X Y, Zhang S F, Chen B H, et al. Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers[J]. Nanoscale, 2016, 8: 431-439.

[81] Tran V, Soklaski R, Liang Y. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B,2014, 89(23):5319.

[82] Zhang S F, Zhang X Y, Wang H, et al. Size-dependent saturable absorption and mode-locking of dispersed black phosphorus nanosheets[J]. Optical Materials Express, 2016, 6: 3159-3168.

[83] Li L K, Kim J,Jin C H, et al. Slow and fast absorption saturation of black phosphorus: experiment and modeling[J]. Nanoscale, 2016, 8: 17374-17382.

[84] Feng C, Zhang X Y, Wang J, et al. Passively mode-locked Nd3+∶YVO4 laser using a molybdenum disulfide as saturable absorber[J]. Optical Materials Express, 2016, 6(4): 1358-1366.

[85] Wu K, Zhang X Y, Wang J, et al. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber[J]. Optics Letters, 2015, 40: 1374-1377.

[86] Wu K, Zhang X Y, Wang J, et al. WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers[J]. Optics Express, 2015, 23(9): 11453-11461.

王俊, 张晓艳, 张赛锋, 赵培均, 张龙. 二维非线性光学材料与器件研究进展[J]. 中国激光, 2017, 44(7): 0703004. Wang Jun, Zhang Xiaoyan, Zhang Saifeng, Zhao Peijun, Zhang Long. Research Progress of Two-Dimensional Nonlinear Optical Materials and Devices[J]. Chinese Journal of Lasers, 2017, 44(7): 0703004.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!