中国激光, 2017, 44 (7): 0703004, 网络出版: 2017-07-05   

二维非线性光学材料与器件研究进展 下载: 2043次

Research Progress of Two-Dimensional Nonlinear Optical Materials and Devices
作者单位
1 中国科学院上海光学精密机械研究所中科院强激光材料重点实验室, 上海 201800
2 西北大学化学与材料科学学院, 陕西 西安 710127
摘要
得益于独特的二维量子限制效应以及层与层之间耦合微扰的消除, 石墨烯、过渡金属硫化物MX2(M=Mo,W,Ti,Nb等; X=S,Se,Te等)、黑磷等二维层状半导体材料与其体材料相比, 在电子学、光子学等性能上都有本质的提高。以中国科学院上海光学精密机械研究所近几年的相关研究成果为主要对象, 结合国内外研究进展, 重点介绍了二维材料的制备方法、物理性质和超快非线性光学性能以及相关器件的研究进展, 并对其前景进行了展望。
Abstract
Thanks to the unique two dimensional quantum confinement effect and elimination of coupling perturbation between layers in two-dimensional (2D) materials, graphene, transition metal chalcogenides (TMDs) MX2(M=Mo, W, Ti, Nb, et al.; X=S, Se, Te, et al.) and black phosphorous (BP) exhibit unique performances in electronics and photonics (compared to their bulk materials). This review mainly introduces the research progress on 2D materials including synthesis, physical properties, and ultrafast nonlinear optical performance and the devices based on the research results in Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, and the prospect also is discussed.
参考文献

[1] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.

[2] Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): 1226419.

[3] Chhowalla M, Shin H S, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275.

[4] Xu M S, Liang T, Shi M M, et al. Graphene-like two-dimensional materials[J]. Chemical Review, 2013, 113(5): 3766-3798.

[5] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.

[6] Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 2013, 499(7459): 419-425.

[7] Eda G, Maier S A. Two-dimensional crystals: managing light foroptoelectronics[J]. ACS Nano 2013, 7(7): 5660-5665.

[8] Hsu A, Wang H, Shin Y C, et al. Large-area 2-D electronics: materials, technology, and devices[J]. Proceedings of the IEEE, 2013, 101(7): 1638-1652.

[9] Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, et al. 2D materials: to graphene and beyond[J]. Nanoscale, 2011, 3(1): 20-30.

[10] Wang Q H,Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.

[11] Sun Z P, Martinez A, Wang F. Optical modulators with 2D layered materials[J]. Nature Photonics, 2016, 10(4): 227-238.

[12] Li L K, Kim J,Jin C. Direct observation of the layer-dependent electronic structure in phosphorene[J]. Nature Nanotechnology, 2017, 12(1): 21-25.

[13] Morita A. Semiconducting black phosphorus[J]. Applied Physics A: Materials Science & Processing, 1986, 39(4): 227-242.

[14] Hanlon D, Backes C, Doherty E, et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics[J]. Nature Communications, 2015, 6: 8563.

[15] Zhang X, Xie H M, Liu Z, et al. Black phosphorus quantum dots[J]. Angewandte Chemie(International Edition), 2015, 54(12): 3653-3657.

[16] Lewis E A, Brent J R, Derby B, et al. Solution processing of two-dimensional black phosphorus[J]. Chemical Communications, 2017, 53(9): 1445-1458.

[17] Wang Y, Huang G, Mu H, et al. Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension[J]. Applied Physics Letters, 2015, 107(9): 091905.

[18] Xu Y, Wang Z,Guo Z, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229.

[19] Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805.

[20] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150.

[21] Splendiani A, Sun L, Zhang Y B, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters,2010, 10(4): 1271-1275.

[22] Matte H S S R, Gomathi A, Manna A K, et al. MoS2 and WS2 analogues of graphene[J]. Angewandte Chemie(International Edition), 2010, 49(24): 4059-4062.

[23] Coleman J N, Lotya M, O′Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571.

[24] Smith R J, King P J, Lotya M, et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions[J]. Advanced Materials, 2011, 23(44): 3944-3948.

[25] Lee K, Kim H Y, Lotya M, et al. Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation[J]. Advance Materials, 2011, 23(36): 4178-4182.

[26] Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors[J]. ACS Nano 2012, 6(1):74-80.

[27] Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Letters, 2011, 11(12): 5111-5116.

[28] Cao T, Wang G, Han W P, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide[J]. Nature Communications, 2012, 3: 887.

[29] Mak K F, He K L, Shan J, et al. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nature Nanotechnology, 2012, 7: 494-498.

[30] Zeng H, Dai J F, Yao W, et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nature Nanotechnology, 2012, 7: 490-493.

[31] Kumar N, He J Q, He D W, et al. Charge carrier dynamics in bulk MoS2 crystal studied by transient absorption microscopy[J]. Journal of Applied Physics, 2013, 113(13): 133702.

[32] Wang K P, Wang J, Fan J T, et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J]. ACS Nano, 2013, 7(10): 9260-9267.

[33] Malard L M, Alencar T V, Barboza A P M, et al. Observation of intense second harmonic generation from MoS2 atomic crystals[J]. Physical Review B, 2013, 87(20): 201401.

[34] Wang R, Chien H C, Kumar J, et al. Third-harmonic generation in ultrathin films of MoS2[J]. ACS Applied Materials & Interfaces, 2013, 6(1): 314-318.

[35] Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Science of the United States of America, 2005, 102(30): 10451-10453.

[36] Liu H, Neal A T, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.

[37] Li L, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.

[38] Dines M B. Lithium intercalation via n-butyllithium of the layered transition metal dichalcogenides[J]. Materials Research Bulletin, 1975, 10(4): 287-291.

[39] Matte H S S R, Gomathi A, Manna A K, et al. MoS2 and WS2 analogues of graphene[J]. Angewandte Chemie (International Edition), 2010, 122(24): 4153-4156.

[40] Zeng Z Y, Yin Z Y, Huang X, et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication[J]. Angewandte Chemie (International Edition), 2011, 50(47): 11093-11097.

[41] Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): 1226419.

[42] Huafeng Y, Withers F, Gebremedhn E, et al. Dielectric nanosheets made by liquid-phase exfoliation in water and their use in graphene-based electronics[J]. 2D Materials, 2014, 1(1): 011012.

[43] Lotya M, Hernandez Y, King P J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions[J]. Journal of the American Chemical Society, 2009, 131(10): 3611-3620.

[44] Stan M C, von Zamory J, Passerini S, et al. Puzzling out the origin of the electrochemical activity of black P as a negative electrode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(17): 5293-5300.

[45] Joensen P, Frindt R F, Morrison S R, et al. Single-layer MoS2[J]. Materials Research Bulletin, 1986, 21(4): 457-461.

[46] Zhang X Y, Zhang S F, Chang C X, et al. Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance[J]. Nanoscale, 2015, 7: 2978-2986.

[47] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2011, 412: 697-698.

[48] Joglekar A P, Liu H H, Meyhofer E, et al. Optics at critical intensity: applications to nanomorphing[J]. Proceedings of National Academy of Science of the United States of America, 2004, 101(16): 5856-5861.

[49] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2: 219-225.

[50] Han G H,Chae S J, Kim E S, et al. Laser thinning for monolayer graphene formation: heat sink and interference effect[J]. ACS Nano, 2011, 5(1): 263-268.

[51] Castellanos-Gomez A, Barkelid M, Goossens A M, et al. Laser-thinning of MoS2: on demand generation of a single layer semiconductor[J]. Nano Letters, 2012, 12(6): 3187-3192.

[52] Peng Y, Meng Z Y, Zhong C, et al. Hydrothermal synthesis of MoS2 and its pressure-related crystallization[J]. Journal of Solid State Chemistry, 2001, 159(1): 170-173.

[53] Peng Y, Meng Z Y, Zhong C, et al. Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2[J]. Chemistry Letters, 2001, 30(8): 772-773.

[54] Matte H S S R, Plowman B, Datta R, et al. Graphene analogues of layered metal selenides[J]. Dalton Transactions, 2011, 40: 10322-10325.

[55] Liu K K, Zhang W J, Lee Y H, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates[J]. Nano Letters, 2012, 12(3): 1538-1544.

[56] Zhan Y, Liu Z,Najmaei S, et al. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate[J]. Small, 2012, 8(7): 966-971.

[57] Lee Y H, Zhang X Q, Zhang W J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 2012, 24(17): 2320-2325.

[58] Shanmugam M, Bansal T, Durcan C A, et al. Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell[J]. Applied Physics Letters, 2012, 100(15): 153901.

[59] Lee H S, Min S W, Chang Y G, et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Letters, 2012, 12(7): 3695-3700.

[60] Li H, Yin Z Y, He Q Y, et al. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature[J]. Small, 2012, 8: 63-67.

[61] Carladous A, Coratger R, Ajustron F, et al. Light emission from spectral analysis of Au/MoS2 nanocontacts stimulated by scanning tunneling microscopy[J]. Physical Review B, 2002, 66: 045401.

[62] Zhu Z F,Coratger R, Ajustron F, et al. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors[J]. Physical Review B, 2011, 84: 153402.

[63] Xiao D, Liu G B, Feng W X, et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides[J]. Physical Review Letters, 2012, 108: 196802.

[64] Sundaram R S, Engel M, Lombardo A, et al. Electroluminescence in single layer MoS2[J]. Nano Letters, 2013, 13: 1416-1421.

[65] Qiu H, Pan L J, Yao Z N, et al. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances[J]. Applied Physics Letters, 2012, 100(12): 123104 .

[66] Korn T, Heydrich S, Hirmer M, et al. Low-temperature photocarrier dynamics in monolayer MoS2[J]. Applied Physics Letters, 2011, 99: 102109.

[67] Wang R, Ruzicka B A, Kumar N, et al. Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide[J]. Physical Review B, 2012, 86: 045406.

[68] Lagarde D, Bouet L, Mari X, et al. Carrier and polarization dynamics in monolayer MoS2[J]. Physical Review Letters, 2014, 112: 047401.

[69] Dal C S, Bottegoni F, Pogna E A A, et al. Ultrafast valley relaxation dynamics in monolayer MoS2 probed by nonequilibrium optical techniques[J]. Physical Review B, 2015, 92: 235425.

[70] Cabo A G, Miwa J A,Groslashnborg S S, et al. Observation of ultrafast free carrier dynamics in single layer MoS2[J]. Nano Letters, 2015, 15: 5883-5887.

[71] Kar S, Su Y, Nair R, et al. Probing photoexcited carriers in a few-layer MoS2 laminate by time-resolved optical pump-terahertz probe spectroscopy[J]. ACS Nano, 2015, 9(12): 12004-12010.

[72] Robert C, Lagarde D, Cadiz F, et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers[J]. Physical Review B, 2016, 93: 205423.

[73] Wang J, Hernandez Y,Lotya M, et al. Broadband nonlinear optical response of graphene dispersions[J]. Advanced Materials, 2009, 21: 2430-2435.

[74] Cheng X, Dong N N, Li B, et al. Controllable broadband nonlinear optical response of graphene dispersions by tuning vacuum pressure[J]. Optics Express, 2013, 21: 16486-16493.

[75] Feng Y Y, Dong N N, Wang G Z, et al. Saturable absorption behavior of free-standing graphene polymer composite films over broad wavelength and time ranges[J]. Optics Express, 2015, 23: 559-569.

[76] Feng Y Y, Dong N N, Li Y X, et al. Host matrix effect on the near infrared saturation performance of graphene absorbers[J]. Optical Materials Express, 2015, 5: 802-808.

[77] Wang K P, Feng Y Y, Chang C X, et al. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors[J]. Nanoscale, 2014, 6: 10530-10535.

[78] Li Y X, Dong N N, Zhang S F, et al. Giant two-photon absorption in monolayer MoS2[J]. Laser Photonics Reviews,2015, 9: 427-434.

[79] Zhang S F, Dong N N, McEvoy N, et al. Direct observation of degenerate two photon absorption and its saturation of WS2 and MoS2 monolayer and few-layer films[J]. ACS Nano, 2015, 9: 7142-7150.

[80] Zhang X Y, Zhang S F, Chen B H, et al. Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers[J]. Nanoscale, 2016, 8: 431-439.

[81] Tran V, Soklaski R, Liang Y. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B,2014, 89(23):5319.

[82] Zhang S F, Zhang X Y, Wang H, et al. Size-dependent saturable absorption and mode-locking of dispersed black phosphorus nanosheets[J]. Optical Materials Express, 2016, 6: 3159-3168.

[83] Li L K, Kim J,Jin C H, et al. Slow and fast absorption saturation of black phosphorus: experiment and modeling[J]. Nanoscale, 2016, 8: 17374-17382.

[84] Feng C, Zhang X Y, Wang J, et al. Passively mode-locked Nd3+∶YVO4 laser using a molybdenum disulfide as saturable absorber[J]. Optical Materials Express, 2016, 6(4): 1358-1366.

[85] Wu K, Zhang X Y, Wang J, et al. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber[J]. Optics Letters, 2015, 40: 1374-1377.

[86] Wu K, Zhang X Y, Wang J, et al. WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers[J]. Optics Express, 2015, 23(9): 11453-11461.

王俊, 张晓艳, 张赛锋, 赵培均, 张龙. 二维非线性光学材料与器件研究进展[J]. 中国激光, 2017, 44(7): 0703004. Wang Jun, Zhang Xiaoyan, Zhang Saifeng, Zhao Peijun, Zhang Long. Research Progress of Two-Dimensional Nonlinear Optical Materials and Devices[J]. Chinese Journal of Lasers, 2017, 44(7): 0703004.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!