强激光与粒子束, 2018, 30 (2): 024001, 网络出版: 2018-03-14  

氦气空心阴极放电动力学过程的模拟研究

Simulation on the dynamics of hollow cathode discharge in helium
作者单位
河北大学 物理科学与技术学院, 河北 保定 071002
摘要
利用流体模型模拟研究了氦气空心阴极放电的时空动力学过程, 计算得到了不同放电时刻电子和亚稳态氦原子密度、电势、电场、基态电离速率和分步电离速率等的时空分布特性。特别是讨论了亚稳态原子和分步电离对于放电的影响。结果表明, 随着电流的增长, 放电处于五个不同的放电模式: 第一阶段电流上升非常缓慢, 为汤生放电模式, 带电粒子密度、亚稳态原子密度和径向电场均很弱; 第二阶段电流迅速上升, 放电模式由汤生放电向空心阴极放电过渡, 带电粒子密度、亚稳态原子密度和径向电场迅速增强; 第三阶段达到准稳态阶段, 放电电流增长速度变缓, 形成了明显的阴极鞘层结构; 第四阶段为空心阴极效应形成阶段, 向稳态阶段过渡; 第五阶段为稳态放电阶段。研究结果同时表明, 亚稳态氦原子和分步电离在放电的初始阶段对于放电的发展作用较弱, 在前三阶段中, 电子的产生以基态电离为主。随着放电的发展, 由亚稳态原子引起的分步电离对新的电子产生的作用逐渐接近并超过基态电离, 对总电离的贡献率越来越高。
Abstract
In this paper, the spatiotemporal dynamics of hollow cathode discharge in helium is simulated by using the fluid model. The spatiotemporal distribution of electrons density, metastable helium atoms density, potential, electric field, direct ionization rate and step-wise ionization are calculated. In particular, the effects of metastable atoms and step-wise ionization on the discharge are discussed. The results show that the discharge is divided into five different discharge modes with the increase of current. In the first stage, the discharge is Townsend discharge mode, the current rises very slowly, and the charged particle density, metastable atom density and radial electric field are very weak. In the second stage, the current increases rapidly, and the discharge mode changes from the Townsend discharge to the hollow cathode discharge. The charged particle density, metastable atom density and radial electric field increase rapidly. The third stage reaches the quasi steady state, and the discharge current increases slowly, resulting in an obvious cathode sheath structure; The fourth stage is the formation stage of the hollow cathode effect, and transits to the steady state. The fifth stage is the steady-state discharge stage. The results also show that the metastable helium atoms and the stepwise ionization are weak in the initial stage of the discharge, and in the initial three stages, the formation of new electrons are dominated by ground ionization. With the development of the discharge, the stepwise ionization caused by the metastable atoms gradually approaches and exceeds the ground ionization, and the contribution rate to the total ionization is getting higher and higher.
参考文献

[1] Schoenbach K H, Becker K. 20 years of microplasma research: a status report[J]. Eur Phys J D, 2016, 70(2): 29.

[2] 欧阳吉庭, 张宇, 秦宇. 微放电及其应用[J]. 高电压技术, 2016, 42(3): 673-684.(Ouyang Jiting, Zhang Yu, Qin Yu. Micro-discharge and its applications. High Voltage Engineering, 2016, 42(3): 673-684)

[3] 赵日康, 张紫浩, 张林, 等. 圆柱形等离子体对微波散射的数值模拟与实验研究[J]. 强激光与粒子束, 2017, 29(3): 36-42.(Zhao Rikang, Zhang Zihao, Zhang Lin, et al. Microwave scattering by inhomogeneous plasma column. High Power Laser and Particle Beams, 2017, 29(3): 36-42)

[4] 顾小卫, 蒙林, 李家胤, 等. 微空心阴极放电的3维数值模拟[J]. 强激光与粒子束, 2009, 21(1): 92-96.(Gu Xiaowei, Meng Lin, Li Jiayin, et al. Three-dimensional numerical simulation of microhollow cathode discharge model. High Power Laser and Particle Beams, 2009, 21(1): 92-96)

[5] Boeuf J P, Pitchford L C, Schoenbach K H. Predicted properties of microhollow cathode discharges in xenon[J]. Appl Phys Lett, 2005, 86(7): 468.

[6] 吴亚雄, 王海兴. 微空心阴极内氩等离子体特性的二维数值模拟[J]. 高电压技术, 2015, 41(9): 2965-2972.(Wu Yaxiong, Wang Haixing. Two-dimensional simulation of discharge characteristics of argon plasma in microhollow cathode. High Voltage Engineering, 2015, 41(9): 2965-2972)

[7] 夏广庆, 薛伟华, 陈茂林, 等. 氩气微腔放电中特性参数的数值模拟研究[J]. 物理学报, 2011, 60: 015201.(Xia Guangqing, Xue Weihua, Chen Maolin, et al. Numerical simulation study on characteristic parameters of microcavity discharge in argon. Acta Physica Sinica, 2011, 60: 015201)

[8] Hong Y J, Kim G J, Lee S H, et al. Comparison between particle-in-cell Monte-Carlo and fluid simulations of argon microhollow discharges[J]. Computer Physics Communications, 2007, 177(1/2): 128.

[9] Wang Q, Doll F, Donnelly V M, et al. Experimental and theoretical study of the effect of gas flow on gas temperature in an atmospheric pressure microplasma[J]. J Phys D: Appl Phys, 2007, 40(14): 4202.

[10] 邹晓兵, 杨新婷, 付洋洋, 等. 低气压He/N2混合气体的辉光放电数值模拟[J]. 高电压技术, 2016, 42(12): 3741-3746.(Zou Xiaobing, Yang Xinting, Fu Yangyang, et al. Numerical simulation of He/N2 mixture glow discharge at low pressure. High Voltage Engineering, 2016, 42(12): 3741-3746)

[11] Beleznai S, Mihajlik G, Maros I, et al. High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp[J]. J Phys D: Appl Phys, 2010, 43: 015203.

[12] 哈静, 谷延霞, 刘立芳. 微空心阴极放电时空特性[J]. 强激光与粒子束, 2014, 26: 054004.(Ha Jing, Gu Yanxia, Liu Lifang. Temporal and spatial characteristics of micro-hollow cathode discharge. High Power Laser and Particle Beams, 2014, 26: 054004)

[13] 付洋洋, 罗海云, 邹晓兵, 等. 棒-板电极下缩比气隙辉光放电相似性的仿真研究[J]. 物理学报, 2014, 63: 095206.(Fu Yangyang, Luo Haiyun, Zou Xiaobing, et al. Simulation on similarity law of glow discharge in scale-down gaps of rod-plane electro de configuration. Acta Physica Sinica, 2014, 63: 095206)

[14] Rauf S, Kushner M J. Dynamics of a coplanar-electrode plasma display panel cell. I. Basic operation[J]. J Appl Phys, 1999, 85(7): 3460-3469.

[15] Deloche R, Monchicourt P, Cheret M, et al. High-pressure helium afterglow at room temperature[J]. Phys Rev A, 1976, 13(3): 1140-1176.

[16] Phelps A V. Absorption studies of helium metastable atoms and molecules[J]. Phys Rev, 1955, 99(4): 1307-1313.

[17] Ward A L. Calculations of cathode-fall characteristics[J]. J Appl Phys, 1962, 33(9): 2789-2794.

何寿杰, 张宝铭, 王鹏, 张钊, 韩育宏. 氦气空心阴极放电动力学过程的模拟研究[J]. 强激光与粒子束, 2018, 30(2): 024001. He Shoujie, Zhang Baoming, Wang Peng, Zhang Zhao, Han Yuhong. Simulation on the dynamics of hollow cathode discharge in helium[J]. High Power Laser and Particle Beams, 2018, 30(2): 024001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!