中国激光, 2014, 41 (8): 0802004, 网络出版: 2014-06-24   

186 MHz低幅度噪声掺铒光纤飞秒激光器 下载: 550次

186 MHz Low Amplitude Noise Erbium-Doped-Fiber Femtosecond Laser
作者单位
1 陕西科技大学电气与信息工程学院, 陕西 西安 710021
2 中科院国家授时中心时间频率基准重点实验室, 陕西 西安 710600
3 中国科学院大学, 北京 100049
4 西安石油大学理学院, 陕西 西安 710065
摘要
飞秒激光器是激光频率测量系统——飞秒光梳的核心部件,其噪声、重复频率、脉冲宽度、光谱等参数决定了它在应用中的表现。报道了用于9.2 GHz基于光学腔超稳微波源的掺铒光纤飞秒激光器的研制。该激光器采用环形腔结构,重复频率为186 MHz,直接输出功率为120 mW,光谱中心波长为1550~1600 nm。采用动态信号分析仪测试了双边带噪声功率谱,结果显示:研制的飞秒激光器自由运转时,1 Hz处双边带幅度噪声为-118 dBc/Hz,在10 Hz到100 kHz频率范围内幅度噪声小于-130 dBc/Hz。
Abstract
Femtosecond laser is the most important part of an optical frequency comb, whose performance is mainly determined by the laser′s noise level, repetition rate, pulse width, spectrum and other parameters. A home-made erbium-doped-fiber femtosecond laser with ring structure and a repetition rate of 186 MHz is reported. This laser is designed for 9.2 GHz ultra-stable photonics microwave generation. The laser has an output power of 120 mW, and its spectrum center wavelength is in the range from 1550 nm to 1600 nm. The double-sideband relative intensity noise of the laser is -118 dBc/Hz at 1 Hz measured with a signal dynamic analyzer. From 10 Hz to 100 kHz, the relative intensity noise level is well below -130 dBc/Hz.
参考文献

[1] T Udem, J Reichert, R Holzwarth, et al.. Accurate measurement of large optical frequency differences with a mode-locked laser[J]. Opt Lett, 1999, 24(13): 881-883.

[2] S A Diddams, David J Jones, Jun Ye, et al.. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. Phys Rev Lett, 2000, 84(22): 5102.

[3] D Touahri, F Nez, M Abed, et al.. LPTF frequency-synthesis chain-results and improvement for the near future[J]. IEEE Trans on Instrumentation and Measurement, 1995, 44(2): 170-172.

[4] H Schnatz, B Lipphardt, J Helmcke, et al.. First phase-coherent frequency measurement of visible radiation[J]. Phys Rev Lett, 1995, 76(1): 18-21.

[5] T Hnsch. Nobel lecture: passion for precision[J]. Rev Mod Phys, 2006, 78(4): 1297-1309.

[6] J Hall. Nobel lecture: defining and measuring optical frequencies[J]. Rev Mod Phys, 2006, 78(4): 1279-1295.

[7] Y Nakajima, H Inaba, K Hosaka, et al.. A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator[J]. Opt Express, 2010, 18(2): 1667-1676.

[8] J Millo, M Abgrall, M Lours, et al.. Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock[J]. Appl Phys Lett, 2009, 94(14): 1-3.

[9] I Coddington, W C Swann, L Nenadovic, et al.. Rapid and precise absolute distance measurements at long range[J]. Nat Photonics, 2009, 3(6): 351-356.

[10] F Giorgetta, W C Swann, L C Sinclair, et al.. Optical two-way time and frequency transfer over free space[J]. Nat Photonics, 2013, 7: 434-438.

[11] G Ycas, F Quinlan, S Diddams, et al.. Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb[J]. Opt Express, 2012, 20(6): 6631-6643.

[12] S Barbieri, Pierre Gellie, Giorgio Santarelli, et al.. Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser[J]. Nat Photonics, 2010, 4(9): 636-640.

[13] L Nugent-Glandorf, T Neely, F Adler, et al.. Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection[J]. Opt Lett, 2012, 37(15): 3285-3287.

[14] 张志刚. 高重复频率飞秒光纤激光技术进展[J]. 光学学报, 2011, 31(9): 0900130.

    Zhang Zhigang. Advances in high repetition rate femtosecond fiber lasers[J]. Acta Optica Sinica, 2011, 31(9): 0900130.

[15] 吴学健, 李岩, 尉昊贇, 等. 飞秒光学频率梳在精密测量中的应用[J]. 激光与光电子学进展, 2012, 49(3): 030001.

    Wu Xuejian, Li Yan, Wei Haoyun, et al.. Femtosecond optical frequency combs for precision measurement applications[J]. Laser & Optoelectronics Progress, 2012, 49(3): 030001.

[16] J Peng, T Liu, R Shu. The pump power was coupled spatially octave-spanning fiber laser comb with 300 MHz comb spacing for optical frequency metrology[C]. Conference on Laser and Electro-Optics, Baltimore USA, 2009.

[17] 曹士英, 孟飞, 林百科, 等. 长时间精密锁定的掺Er光纤飞秒光学频率梳[J]. 物理学报, 2012, 61(13): 134205.

    Cao Shiying, Meng Fei, Lin Baike, et al.. Precise frequency control of an Er-doped fiber comb[J]. Acta Physics Sinica, 2012, 61(13): 134205.

[18] D Ma, Y Cai, C Zhou, et al.. 37.4 fs pulse generation in an Er-fiber laser at 225 MHz repetition rate[J]. Opt Lett, 2010, 35(17): 2858-2860.

[19] F Quinlan, T M Fortier, M S Kirchner, et al.. Ultralow phase noise microwave generation with an Erfiber-based optical frequency divider[J]. Opt Lett, 2011, 36(16): 3260-3263.

[20] J Taylor, S Datta, A Hati, et al.. Characterization of power-to-phase conversion in high-speed P-I-N photodiodes[J]. IEEE Photonics J, 2011, 3(1): 140-151.

闫露露, 张颜艳, 赵文宇, 孟森, 郑恩让, 郭文阁, 姜海峰, 张首刚. 186 MHz低幅度噪声掺铒光纤飞秒激光器[J]. 中国激光, 2014, 41(8): 0802004. Yan Lulu, Zhang Yanyan, Zhao Wenyu, Meng Sen, Zheng Enrang, Guo Wenge, Jiang Haifeng, Zhang Shougang. 186 MHz Low Amplitude Noise Erbium-Doped-Fiber Femtosecond Laser[J]. Chinese Journal of Lasers, 2014, 41(8): 0802004.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!