应用光学, 2019, 40 (5): 738, 网络出版: 2019-11-05  

金催化的硅纳米线的可控制备及光学特性研究

Research on controllable preparation and optical properties of gold catalysed silicon nanowires
作者单位
1 西安工业大学 光电工程学院, 陕西 西安 710021
2 西安工业大学 西北兵器工业研究院, 陕西 西安 710021
摘要
硅纳米线是新型一维半导体纳米材料的典型代表。利用阳极氧化铝薄膜为模版复制出具有有序纳米结构的金膜, 在金的催化辅助下对单晶硅进行湿法刻蚀, 得到尺寸、形状、分布可控的硅纳米线阵列, 并对其光学特性进行了研究。研究结果表明, 金代替银作为催化剂, 可以有效地抑制二次刻蚀, 金的化学性质相对于银更加稳定, 克服了银膜在较高的温度或较长刻蚀时间下产生的结构性破坏, 得到形貌规整、尺寸可控的硅纳米线阵列。对该阵列在400 nm~1 200 nm波段的反射率、透过率进行了测试, 并对比分析了金模板催化与传统方法机理的异同。测试结果表明, 相较于传统金属辅助化学刻蚀法, 文中提出的金模板催化法制备的硅纳米线阵列尺寸及分布更加均匀可控, 在宽光谱范围内的抗反射性得到了显著提高。
Abstract
Silicon nanowires are the typical representative of new one-dimensional semiconductor nanomaterials. The ultrathin anodic aluminium oxide membrane was employed as the template for reproducing ordered ultrathin gold nanomeshes array. The silicon nanowires arrays with controllable size and shape distribution were prepared by wet etching of monocrystalline silicon under the catalysis of gold film, and their optical properties were studied. The results show that the chemical properties of gold instead of silver as a catalystare more stable than that of silver, which can effectively avoid the secondary etching and overcome the structural damage of silver film at higher temperature or longer etching time, and the silicon nanowires arrays with regular shape and controllable size can be obtained. The reflectivity and transmissivity of the arrays in the band of 400 nm~1200 nm were tested, and the similarities and differences of mechanism between the gold film catalysis and the conventional method were compared. The test results indicate that, compared with conventional metal-assisted chemical etching, the size and distribution of silicon nanowires arrays prepared by the gold film catalytic method proposed are more uniform and controllable, and the anti-reflective properties are effectively improved in broadband spectrum.
参考文献

[1] 张荣君, 陈一鸣, 郑玉祥, 等.硅发光研究与进展[J].中国激光, 2009, 36(2): 269-274.

    ZHANG Rongjun, CHEN Yiming, ZHENG Yuxiang, et al. Research and progress of silicon luminescence[J]. Chinese Journal of Lasers, 2009, 36(2): 269-274.

[2] 邓皓月, 张云怀, 肖鹏, 等.硅纳米线的制备技术及应用研究新进展[J].化工进展, 2010, 29(2): 274-280.

    DENG Haoyue, ZHANG Yunhuai, XIAO Peng, et al. Progress in the preparation techniques and applications of silicon nanowires[J]. Chemical Industry and Engineering Progress, 2010, 29(2): 274-280.

[3] 刘莉, 曹阳, 贺军辉, 等.硅纳米线阵列的制备及其光电应用[J].化学进展, 2013, 25(2/3): 248-258.

    LIU Li, CAO Yang, HE Junhui, et al. Preparation and optoelectronic applications of silicon nanowire arrays[J]. Progress in Chemistry, 2013, 25(2/3): 248-258.

[4] 刘浩, 刘锦辉.金属辅助化学刻蚀法制备尺寸可控的硅纳米线[J].科学技术与工程, 2018, 18(31): 138-141.

    LIU Hao, LIU Jinhui. Preparation of silicon nanowires with controlled size by metal-assisted chemical etching[J]. Science Technology and Engineering, 2018, 18(31): 138-141.

[5] HUANG Z, GEYER N, WERNER P, et al. Metal-assisted chemicaletchingof silicon: a review[J]. Advanced Materials, 2011, 23(2), 285-308.

[6] HUANG Z P, ZHONG P, WANG C F, et al. Silicon nanowires/reduced graphene oxide composites for enhanced photoelectrochemical properties[J]. ACS Applied Materials & Interfaces 2013, 5(6): 1961-1966.

[7] 任军营, 王凯歌, 魏洪铎, 等.基于AAO的CuCl2纳米花瓣状薄膜的发光特性研究[J].应用光学, 2015, 36(4): 624-629.

    REN Junying, WANG Kaige, WEI Hongduo, et al. Luminescence property of nano-flower-like CuCl2 film based on AAO template[J]. Journal of Applied Optics, 2015, 36(4): 624-629.

[8] 胡国锋, 张海明, 邸文文, 等.AAO模板的湿法刻蚀研究[J].半导体技术, 2010, 35(6): 531-533.

    HU Guofeng, ZHANG Haiming, DI Wenwen, et al. Study of wet etching of AAO template[J]. Semiconductor Technology, 2010, 35(6): 531-533.

[9] 张吉林, 洪广言.利用AAO模板合成纳米材料[J].应用化学, 2004, 21(1): 6-11.

    ZHANG Jilin, HONG Guangyan. The nanomaterials synthesized by using AAO template[J]. Chinese Journal of Applied Chemistry, 2004, 21(1): 6-11.

[10] LI X, BOHN P W. Metal-assisted chemical etching in HF/H2O2 produces porous silicon[J]. Applied Physics Letters 2000, 77(16): 2572-2574.

[11] PENG K Q, WU Y, FANG H, et al. Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays[J]. Angewandte Chemie, 2005, 117(18): 2797-2802.

[12] PENG K, HU J, YAN Y, et al. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles[J]. Advanced Functional Materials, 2006, 16(3): 387-394.

[13] CHATTOPADHYAY S, LI X L, BOHN P W. In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching[J]. Journal of Applied Physics, 2002, 91(9): 6134-6140.

[14] HUANG Z P, ZHANG X X, REICHE M, et al. Extended arrays of vertically aligned sub-10 nm diameter [100]Si nanowires by metal-assisted chemical etching[J]. Nano Letters, 2008, 8(9): 3046-3051.

[15] PENG K Q, ZHU J. Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution[J]. Electrochimica Acta, 2004, 49(16): 2563-2568.

[16] KIM J, HAN H E, KIM Y H, et al. Au/Ag bilayered metal mesh as a Si etching catalyst for controlled fabrication of Si nanowires[J]. ACS Nano, 2011, 5(4): 3222-3229.

[17] HUANG Z, FANG H, ZHU J. Fabrication of silicon nanowire arrays with controlled diameter, length, and density[J]. Advanced Materials, 2007, 19(5): 744-748.

[18] 段花花, 李新化, 周步康, 等. 基于Au辅助化学刻蚀法实现低成本制备硅纳米线阵列[J].半导体光电, 2015, 36(4): 597-601.

    DUAN Huahua, LI Xinhua, ZHOU Bukang, et al. Low-cost preparation of Si nanowires array through Au-assisted chemical etching[J]. Semiconductor Optoelectronics, 2015, 36(4): 597-601.

[19] 李汝雄, 王建基.金的新用途: 作为化学反应的催化剂[J].黄金, 2004, 25(4): 7-10.

    LI Ruxiong, WANG Jianji. New application of Au-catalysts in chemical reaction[J]. Gold, 2004, 25(4): 7-10.

[20] KELZENBERG M D, BOETTCHER S W, PETYKIEWICZ J A, et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications[J]. Nature Materials, 2010, 9(3): 239-244.

[21] QIU M B, HUANG Y H, LIU Z D, et al. Numerical study on effect of silicon texture structure on reflectance of light[J]. Acta Optica Sinica 2008, 28(12): 2394.

[22] GARNETT E, YANG P D. Light trapping in silicon nanowire solar cells[J]. Nano Letters, 2010, 10(3): 1082-1087.

[23] PENG K Q, XU Y, WU Y, et al. Aligned single-crystalline Si nanowire arrays for photovoltaic applications[J]. Small, 2005, 1(11): 1062-1067.

[24] 陈奎先, 王宇, 何桃桃, 等. 基于超表面材料的扇出衍射光学元件[J]. 应用光学, 2019, 40(2): 306-310.

    CHEN Kuixian, WANG Yu, HE Taotao, et al. Metasurface fan-out diffractive optical elements[J]. Journal of Applied Optics, 2019, 40(2): 306-310.

[25] SIVAKOV V, ANDR G, GAWLIK A, et al. Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters[J]. Nano Letters, 2009, 9(4): 1549-1554.

[26] MUSKENS O L, RIVAS J G, ALGRA R E, et al. Design of light scattering in nanowire materials for photovoltaic applications[J]. Nano Letters, 2008, 8(9): 2638-2642.

[27] MA D D D. Small-diameter silicon nanowire surfaces[J]. Science, 2003, 299(5614): 1874-1877.

[28] BANFI G, DEGIORGIO V, RICARD D. Nonlinear optical properties of semiconductor nanocrystals[J]. Advances in Physics, 1998, 47(3): 447-510.

王珊珊, 殷淑静, 梁海锋, 韩军. 金催化的硅纳米线的可控制备及光学特性研究[J]. 应用光学, 2019, 40(5): 738. WANG Shanshan, YIN Shujing, LIANG Haifeng, HAN Jun. Research on controllable preparation and optical properties of gold catalysed silicon nanowires[J]. Journal of Applied Optics, 2019, 40(5): 738.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!