中国光学, 2013, 6 (2): 237, 网络出版: 2013-05-24   

低轨道轻质星载一体化空间光学遥感器的热设计

Thermal design of lightweight space remote sensor integrated with satellite in low earth orbit
作者单位
中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
摘要
根据空间光学遥感器的轨道特点和任务需求,通过仿真分析对其进行了热设计。考虑近地空间环境的特殊性,选择防原子氧布作为多层隔热材料的面膜。为减小遥感器框架上安装的星上设备对遥感器温度的影响,设计了大热阻安装结构并使用了聚酰亚胺隔热垫。根据离轴三反光学遥感器及星载一体化卫星的结构特点,划分了主动加热区域,分配了加热功耗。由于遥感器对地观测频率低、工作功耗小、工作时间短,CCD焦面组件不设置散热面。根据遥感器的轨道参数和姿态,确定了3个典型工况并对其进行了仿真分析和热平衡试验。结果显示,遥感器本体温度为(18±4) ℃、光学元件温度为(18±2) ℃、CCD温度≤30 ℃,得到的仿真分析结果和试验数据验证了遥感器热设计的有效性。
Abstract
A thermal simulation was established according to sensor parameters and the mission requirements to accomplish the thermal design of a lightweight space remote sensor. Atomic oxygen resistant cloth was chosen as the outmost material to reduce the damage by the space environment approximating to the earth. For some satellite devices installed on the back frame of the remote sensor, the connections with high heat resistance were designed and heat insulators were used to eliminate the heat influence on the devices. The positions and powers of the heaters were distributed according to the remote sensor′s structure characters. However, none radiator was set because of such small power and duty factor of the CCD components. Finally, the thermal design was certified by a thermal balance test. Three cases designed according to the orbit parameters and attitudes of the remote sensor were simulated and tested. The experiments show that the temperatures of frames and mirrors are (18±4) ℃ and (18±2) ℃, respectively, and the temperatures of the CCD components are lower than 30 ℃. The simulation analysis and the thermal balance test results both indicate that the thermal design is valid and content to the mission requirements.
参考文献

[1] 韩昌元.高分辨率空间相机的光学系统研究[J].光学 精密工程,2008,16(11):2164-2172.

    HAN CH Y. Study on optical system of high resolution space camera[J]. Opt. Precision Eng.,2008,16(11):2164-2172.(in Chinese)

[2] 杨献伟,吴清文,李书胜,等.低轨道低能量空间光学遥感器热设计[J].光学技术,2011,37(1):91-96.

    YANG X W,WU Q W,LI SH SH,et al.. Thermal design of a low-energy space optical remote sensor in LEO[J]. Optical Technique,2011,37(1):91-96.(in Chinese)

[3] 闵桂荣,郭舜.航天器热控制[M].二版.北京:科学出版社,1998.

    MIN G R,GUO SH. Spacecraft Thermal Control[M]. 2nd ed. Beijing:Science Press,1998.(in Chinese)

[4] 吴清文,卢泽生,卢锷.空间光学遥感器热分析[J].光学 精密工程,2002,10(2):205-208.

    WU Q W,LU Z SH,LU E.Thermal analysis for a space optical remote sensor[J]. Opt. Precision Eng.,2002,10(2):205-208.(in Chinese)

[5] 陈立恒,吴清文,卢锷,等.空间摄像机热设计[J].光学技术,2008,37(10):2039-2042.

    CHENG L H,WU Q W,LU E. Thermal design of space camera[J]. Optical Technique,2008,37(10):2039-2042.(in Chinese)

[6] 吴雪峰,丁亚林,吴清文.临近空间光学遥感器热设计[J].光学 精密工程,2010,18(5):1159-1164.

    WU X F,DING Y L,WU Q W. Thermal design for near space optical remote sensor[J]. Opt. Precision Eng.,2010,18(5):1159-1164.(in Chinese)

[7] 于善猛,刘巨,杨劲松,等.离轴式空间光学遥感器的热设计及仿真研究[J].红外与激光工程,2011,40(8):1521-1525.

    YU S M,LIU J,YANG J S,et al..Thermal design and simulation for off-axis space optical remote sensor[J]. Infrared and Laser Eng.,2011,40(8):1521-1525.(in Chinese)

[8] 贾学志,王栋,张雷,等.轻型空间相机调焦机构的优化设计与精度试验[J].光学 精密工程,2011,19(8):1824-1831.

    JIA X ZH,WANG D,ZHANG L,et al.. Optimizing design and precision experiment of focusing mechanism in lightweight space camera[J]. Opt. Precision Eng.,2011,19(8):1824-1831.(in Chinese)

[9] 杨献伟,吴清文,李书胜,等.空间光学遥感器设计[J].中国光学,2011,4(2):139-146.

    YANG X W,WU Q W,LI S S,et al.. Thermal design of space optical remote sensor[J]. Chinese Optics,2011,4(2):139-146.(in Chinese)

江帆, 吴清文, 刘巨, 李志来, 杨献伟, 于善猛. 低轨道轻质星载一体化空间光学遥感器的热设计[J]. 中国光学, 2013, 6(2): 237. JIANG Fan, WU Qing-wen, LIU Ju, LI Zhi-lai, YANG Xian-wei, YU Shan-meng. Thermal design of lightweight space remote sensor integrated with satellite in low earth orbit[J]. Chinese Optics, 2013, 6(2): 237.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!